PARTIAL DISCHARGE DETERMINATION DEVICE AND METHOD
To provide a partial discharge determination device and method capable of performing partial discharge determination with high accuracy on the basis of measurement data acquired under a noise environment.SOLUTION: A partial discharge determination method executed in a partial discharge determination...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English Japanese |
Published |
16.02.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To provide a partial discharge determination device and method capable of performing partial discharge determination with high accuracy on the basis of measurement data acquired under a noise environment.SOLUTION: A partial discharge determination method executed in a partial discharge determination device for determining the existence/nonexistence of a partial discharge generated in a power generation facility acquires measurement data representing a charge amount and a phase of each partial discharge generated in the power generation facility, eliminates or reduces noise included in the measurement data on the basis of statistical information, generates a partial discharge and φ-q-n data representing a charge amount, a phase and a pulse number of noise included in the measurement data from the measurement data obtained by eliminating or reducing the noise, and determines whether at least the partial discharge is generated by using a learning model generated by performing machine learning of the partial discharge and the φ-q-n data on the basis of the φ-q-n data generated by a φ-q-n data generation part.SELECTED DRAWING: Figure 4
【課題】ノイズ環境下で取得された測定データに基づいて精度良く部分放電判定を行い得る部分放電判定装置及び方法を提案する。【解決手段】送電設備に発生する部分放電の有無を判定する部分放電判定装置において実行される部分放電判定方法であって、送電設備で発生した各部分放電の電荷量及び位相を表す計測データを取得し、計測データに含まれるノイズを統計情報に基づいて削除又は削減し、ノイズを削除又は削減した測定データから、当該測定データに含まれる部分放電及びノイズの電荷量、位相及びパルス数を表すφ-q-nデータを生成し、φ-q-nデータ生成部が生成したφ-q-nデータに基づき、部分放電及びノイズのφ-q-nデータを機械学習して生成した学習モデルを利用して、少なくとも前記部分放電が発生しているか否かを判定するようにした。【選択図】 図4 |
---|---|
Bibliography: | Application Number: JP20210130134 |