REQUIRED AMOUNT PREDICTION DEVICE, REQUIRED AMOUNT PREDICTION METHOD AND PROGRAM

To provide a required amount prediction device, a required amount prediction method and a program that realize both of suppression of surplus stocks and suppression of product sale opportunity loss.SOLUTION: A total required amount acquisition unit 104 acquires a total required amount on the basis o...

Full description

Saved in:
Bibliographic Details
Main Author NAKAYAMA AI
Format Patent
LanguageEnglish
Japanese
Published 22.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To provide a required amount prediction device, a required amount prediction method and a program that realize both of suppression of surplus stocks and suppression of product sale opportunity loss.SOLUTION: A total required amount acquisition unit 104 acquires a total required amount on the basis of information associated with a production plan stored by a production plan storage unit 103. A trend acquisition unit 105 identifies a past period in which distribution of an operation date is similar to a target period. The trend acquisition unit 105 receives information indicating a history of a used amount of an article in the identified past period from an actual result storage unit 102. The trend acquisition unit 105 acquires a trend of the used amount of the article on the basis of the history of the used amount of the article. A segmented required amount prediction unit 106 predicts a segmented required amount being the required amount for each segmentation period segmenting the target period on the basis of the total required amount of the article and the trend of the used amount of the article in the identified past period.SELECTED DRAWING: Figure 1 【課題】余剰在庫の抑制及び製品販売機会損失の抑制のいずれも実現する所要量予測装置、所要量予測方法及びプログラムを提供する。【解決手段】総所要量取得部104は、生産計画記憶部103が記憶する、生産計画に関する情報に基づいて総所要量を取得する。傾向取得部105は、操業日の分布が対象期間と相似する過去の期間を特定する。傾向取得部105は、特定した過去の期間における物品の使用量の履歴を示す情報を実績記憶部102から受信する。傾向取得部105は、物品の使用量の履歴に基づいて物品の使用量の傾向を取得する。細分所要量予測部106は、物品の総所要量と、特定した過去の期間における物品の使用量の傾向と、に基づいて、対象期間を細分化した細分期間ごとの所要量である細分所要量を予測する。【選択図】図1
Bibliography:Application Number: JP20180002291