MACHINE LEARNING DEVICE AND MACHINE LEARNING METHOD FOR LEARNING FAULT CONDITION AND FAULT PREDICTION DEVICE AND FAULT PREDICTION SYSTEM EQUIPPED WITH MACHINE LEARNING DEVICE

PROBLEM TO BE SOLVED: To provide a fault prediction system that makes it possible to accurately predict a fault depending on a situation.SOLUTION: A fault prediction system 1 includes a machine learning device 5 that learns a condition associated with a fault in an industrial machine 2. The machine...

Full description

Saved in:
Bibliographic Details
Main Authors INAGAKI SHOGO, OKUDA RYOSUKE, MATSUMOTO EIICHI, OKANOHARA DAISUKE, NAKAGAWA HIROSHI, KAWAI KEIGO
Format Patent
LanguageEnglish
Japanese
Published 09.02.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:PROBLEM TO BE SOLVED: To provide a fault prediction system that makes it possible to accurately predict a fault depending on a situation.SOLUTION: A fault prediction system 1 includes a machine learning device 5 that learns a condition associated with a fault in an industrial machine 2. The machine learning device 5 is provided with: a state observation unit 52 for observing a state variable constituted with the output data of a sensor 11, the internal data of control software, or calculation data obtained on the basis of the foregoing while the industrial machine 2 is operating or stationary; a determination data acquisition unit 51 for acquiring determination data in which the presence or the degree of a fault in the industrial machine 2 is determined; and a learning unit 53 for learning a condition associated with a fault in the industrial machine 2 in accordance with a training data set created on the basis of a combination of the state variable and the determination data.SELECTED DRAWING: Figure 1 【課題】状況に応じて正確な故障予知を可能にする故障予知システムを提供する。【解決手段】故障予知システム1は、産業機械2の故障に関連付けられる条件を学習する機械学習装置5を備えている。機械学習装置5は、センサ11の出力データ、制御ソフトウェアの内部データ、又はそれらに基づいて得られる計算データなどから構成される状態変数を産業機械2の動作中又は静止中に観測する状態観測部52と、産業機械2の故障の有無又は故障の度合いを判定した判定データを取得する判定データ取得部51と、状態変数及び判定データの組合せに基づいて作成される訓練データセットに従って、産業機械2の故障に関連付けられる条件を学習する学習部53と、を備えている。【選択図】図1
Bibliography:Application Number: JP20150234022