PACHINKO MACHINE

PROBLEM TO BE SOLVED: To prevent a performance from becoming monotonous even if held ball random numbers are increased.SOLUTION: In a pachinko machine, games are executed in the order of game balls winning in a first start hole or a second start hole. A variation time of special patterns includes a...

Full description

Saved in:
Bibliographic Details
Main Authors HASEGAWA CHIHIRO, ARANAKA YOSHIHIKO, KOBAYASHI KAZUHIRO, SAKAI YUKI, KAMEDA MUNEKATSU, ITO YOSUKE, AOKI DAIKI, SHIRAI NORIYA, KITO TOSHIHIKO
Format Patent
LanguageEnglish
Japanese
Published 16.04.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:PROBLEM TO BE SOLVED: To prevent a performance from becoming monotonous even if held ball random numbers are increased.SOLUTION: In a pachinko machine, games are executed in the order of game balls winning in a first start hole or a second start hole. A variation time of special patterns includes a failure variation time corresponding to a normal failure performance that is not developed to a specific performance indicating that a possibility of bonanza is higher than normal one. The failure variation time is formed from a relation previously corresponding to the numbers of first held ball random numbers and second held ball random numbers. The failure variation time tends to become equal or short, as the numbers of held ball random numbers are increased, with respect to first to M-th held ball random numbers among totally L pieces of (eight) held ball random numbers of maximum M pieces of (four) first held ball random numbers and maximum N pieces of (four) second held ball random numbers, and tends to become equal or short, as the numbers of held ball random numbers are increased, also with respect to (M+1)th to L-th held ball random numbers. 【課題】保留球乱数が増えても演出が単調となることを防止する。【解決手段】第1始動口または第2始動口に遊技球が入賞した順番に遊技が行われるパチンコ機において、特別図柄の変動時間の中には、大当たりの可能性が通常よりも高いことを示す特定演出に発展することのない通常のハズレ演出に対応したハズレ変動時間が含まれ、ハズレ変動時間は、第1保留球乱数および第2保留球乱数の数と予め対応する関係からなり、ハズレ変動時間は、第1保留球乱数の最大数であるM個(4個)と第2保留球乱数の最大数であるN個(4個)との合計であるL個(8個)の保留球乱数のうち、1個目〜M個目までの保留球乱数に対しては、保留球乱数の数が増えるにつれて同じか短くなる傾向にあり、かつ、M+1個目〜L個目までの保留球乱数に対しても、保留球乱数の数が増えるにつれて同じか短くなる傾向にある。【選択図】図17
Bibliography:Application Number: JP20130206784