Machine learning assisted completion design for new wells

Systems and methods for completion design are disclosed. Wellsite data is acquired for one or more existing production wells. The wellsite data is transformed into model data sets for training a first machine learning (ML) model to predict well logs. A first well model uses the well logs to estimate...

Full description

Saved in:
Bibliographic Details
Main Authors Yogesh Bansal, Gerardo Mijares
Format Patent
LanguageEnglish
Published 10.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Systems and methods for completion design are disclosed. Wellsite data is acquired for one or more existing production wells. The wellsite data is transformed into model data sets for training a first machine learning (ML) model to predict well logs. A first well model uses the well logs to estimate production of the existing well(s). Parameters of the first well model are tuned based on a comparison between the estimated and actual production of the existing well(s). A second ML model is trained to predict parameters of a second well model for a new well, based on the tuned parameters of the first well model. The new well's production is forecasted using the second ML model. Completion costs for the new well are estimated based on the well's completion design parameters and the forecasted production. Completion design parameters are adjusted, based on the estimated completion costs and the forecasted production.
Bibliography:Application Number: GB20240005016