Absorbent article containing apertures arranged in registration with an embossed wave pattern

An absorbent article that contains a topsheet having embossed regions is provided. The embossed regions propagate in a longitudinal direction of the article in the form of a wave having one or more alternating crests (peaks) and troughs (valleys). Such a wave pattern helps slow down the flow of bodi...

Full description

Saved in:
Bibliographic Details
Main Authors YEINSZE ONG, FRANZ ASCHENBRENNER, MEIJIA NG, PRISCILLA GOH ENG CHOO, SANGWOOK LEE, DOOHONG KIM
Format Patent
LanguageEnglish
Published 12.02.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An absorbent article that contains a topsheet having embossed regions is provided. The embossed regions propagate in a longitudinal direction of the article in the form of a wave having one or more alternating crests (peaks) and troughs (valleys). Such a wave pattern helps slow down the flow of bodily fluid by directing it along a tortuous path defined by the densified edges rather than in a straight line. Among other things, this reduction in flow rate can help provide sufficient time for the absorbent core to absorb the fluid, which is particularly helpful when it is already partially filled with fluid. Nevertheless, bodily fluids can still sometimes pool near the crests and/or troughs and result in leakage. To help counteract this tendency, the present inventors have discovered that a plurality of apertures can be employed in the topsheet that are arranged in a column that generally extends in a longitudinal direction of the article. At least a portion of the apertures are located proximate to contiguous crests and/or contiguous troughs of the embossed region. Without intending to be limited by theory, it is believed that the registration of the apertures with contiguous crests and/or contiguous troughs of the embossed region puts them in a better position to receive bodily fluids that tend to pool around the embossed regions and thus reduce the likelihood of leakage.
Bibliography:Application Number: GB20130019990