HIGH CAPACITY, LONG CYCLE LIFE BATTERY ANODE MATERIALS, COMPOSITIONS AND METHODS

Polymer derived ceramic (PDC) materials, compositions and methods of making high capacity, long cycle, long life battery anodes to improve the performance of batteries of all types, including but not limited to coin cell batteries, electric vehicle (EV) batteries, hybrid electric vehicle (HEV) batte...

Full description

Saved in:
Bibliographic Details
Main Authors Sherwood, Walter, Marcus, Kyle, Easter, William G, Hill, Arnold
Format Patent
LanguageEnglish
French
German
Published 13.03.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Polymer derived ceramic (PDC) materials, compositions and methods of making high capacity, long cycle, long life battery anodes to improve the performance of batteries of all types, including but not limited to coin cell batteries, electric vehicle (EV) batteries, hybrid electric vehicle (HEV) batteries, plug-in hybrid electric vehicle (PHEV) batteries, battery electric vehicle (BEV) batteries, lithium cobalt (LCO) batteries, lithium iron (LFP) batteries; and lithium-ion (Li) batteries, and lead acid batteries. Silicon is incorporated in the PDC material at a molecular level when reacting a polymer derived ceramic precursor and a silicon hydride constituent or a silicon alkoxide constituent to form a PDC composition useful as a powdered battery anode material. A predetermined amount of divinylbenzene is added as a crosslinker and a modifier to increase free carbon content. The resulting battery anode materials increase the specific capacity of a battery measured in milliampere-hours per gram (mAh/g) and increase the life cycle of a battery while minimizing distortion and stress of the anode structure.
Bibliography:Application Number: EP20230169028