ELECTRONIC CIRCUIT
When an overcurrent is detected by an overcurrent detecting circuit (36), a first switch circuit (32) selects a second input terminal (b) and connects an output terminal (c) to the second input terminal (b), with the result that the output terminal (c) of the first switch circuit (32) is put into a...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English French German |
Published |
19.07.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | When an overcurrent is detected by an overcurrent detecting circuit (36), a first switch circuit (32) selects a second input terminal (b) and connects an output terminal (c) to the second input terminal (b), with the result that the output terminal (c) of the first switch circuit (32) is put into a high-impedance state. The second switch circuit (34) selects a second output terminal (f) and connects an input terminal (d) to the second output terminal (f), with the result that the input terminal (d) of the second switch circuit (34) is grounded. That is, the gate of a first MOSFET (21) is grounded via a current interrupting resistor (35). The resistance value of the current interrupting resistor (35) is set so that, at the time of a current interruption, a time interval from a time when the gate-source voltage or gate-emitter voltage of the switching device lowers to such a voltage that the temperature characteristics of the on-resistance of the switching device become negative to a time when the drain current or collector current of the switching device reaches 2% of the saturation current thereof is 500 [nsec] or less. |
---|---|
Bibliography: | Application Number: EP20230160852 |