More Information
Summary:The subject matter of the invention is a method for obtaining pure drinking water from dewatered biological products, which accompanies the dewatering process of these products, carried out in a hermetic dewatering chamber, isolated from the ambient atmosphere, and which runs in parallel with the process during which the dried products placed on drying trays, arranged on at least one rack with shelves having heating surfaces, are tightly closed inside a hermetic dewatering chamber, the products having already undergone an initial phase of being subjected to a gas medium in the form of nitrogen at temperatures from 300C to 500C and the pressure from 1.1 do 1.4 Pa inside the dewatering chamber, after which the actual dewatering phase begins, initiated by activating all the components of the device, where all the parameters of the dewatering process such as temperature, humidity and appropriate pressure inside the dewatering chamber are controlled automatically by a setting and control system, after which phase the raw material is subjected to two simultaneous processes with the use of the blowing and heating systems, i.e., the process of being blown with a gas medium that flows through a batch of biological product at positive pressure and a predetermined temperature of 300 to 45 0 ,and the process of desorption drying induced by shelf heating surfaces, which involves heating the product to a temperature of 40 - 45°C by the heat released from the heating system and the vapour originated/released from the dewatered products is continuously removed from the dewatering chamber through the upper opening, exits through the outflow channel and enters through the flow channel (air duct) the condenser, located outside the dewatering chamber, and the condensate is directed to a special container, also located outside the dewatering chamber. According to the essence of the invention, the process of obtaining pure drinking water is carried out outside the dewatering chamber (1), the process being carried out in several stages, in which:a) warm vapour, originating from the dewatered products, escaping continuously through the upper opening of the dewatering chamber (1) into the outflow channel (13) forming part of the flow channel (13), located outside the dewatering chamber (1), flows through wire disinfectant grids (20) placed in the channel (13),b) then the vapour flows towards the condenser (14) made of acid-resistant steel which is cooled down by a refrigerating unit (18) whereby as a result of the cooling of the condenser (14), at the point where warm gases leaving the dewatering chamber (1) come into contact with the condenser (14), the "dew point" occurs, where - at the temperature of coolled condenser (14) ranging from +5 0C to +15 0C, the process of gas condensation begins,c) the vapour condenses on the densely arranged lamellas (19) made of acid-resistant steel and located inside the condenser (14),d) next, fans (4) pump the vapour, and the condensate generated from the condensation of the vapour is directed in sterile conditions from the condenser (14) to a condensate discharge tub (21),e) the condensate goes into a flow duct (i.e. pipes or a hose) (22) and it flows through it in sterile conditions into a special water storage tank (16).The subject matter of the invention is also a device for dewatering such products, provided with elements allowing for extracting crystal clear water from the dewatered biological products, being an improvement of the design of the device constituting a physically and thermally closed unit, with a hermetic dewatering chamber (1) fitted with a door (2) and connected by pipes with a condenser (14) located outside, inside which chamber a heat exchanger is located, with the said heat exchanger having the form of a rack (5), whose entire supporting structure is filled with heating liquid and the rack (5) has shelves (6) on which drying trays filled with dewatered biological raw material are stacked one over another, additionally the rack (5) is detachably connected to the heater (9) by a supply and outflow pipeline located outside the dewatering chamber (1), and has a system for introducing nitrogen and bacteriostatic agents inside the dewatering chamber (1), comprising a nitrogen container (12) placed outside the dewatering chamber (1), which is connected by pipes (11) to injectors (10) located at the floor of the dewatering chamber (1) and equipped with a system for forcing the flow of a gas medium at a predetermined pressure dewatering chamber (1), at at the height of each tray and in the rear wall of the dewatering shelf (6), fans (4) - preferably turbine ones - with individual capacity control are placed that blow a gas medium into the dewatering chamber (1), into the spaces between the drying trays and apart from that, the device has an automated setting and control system (17), which controls the process parameters as well as a container (16), also located outside the dewatering chamber (1), for collecting the condensate. According to the invention in the flow channel (13) located above the dewatering chamber (1), in which the gas medium flows in a closed circuit, there are at least two replaceable disinfection wire grids (20), of which at least one grid (20) is located in the outflow channel (15), being part of the flow channel (13), in the space between the upper opening of the dewatering chamber (1) and the condenser (14), forming a vessel located in the middle of the flow channel (13), made of acid-resistant steel, and at least one disinfectant wire grid (20) is located in the inflow channel (15) which is also a part of the flow channel (13), in the space between the condenser (14) and the upper inflow opening of the dewatering chamber (1) (through which dehydrated vapour returns to the dewatering chamber (1)), and apart from that, outside the dewatering chamber (1), at a side adjacent to the upper opening constituting the inflow channel (15), there is a refrigeration unit (18) which cools the condenser (14) by ice water and causes the "dew point", at which the gas condensation process begins, and inside the condenser (14) there are densely mounted lamellas (19), made of acid-resistant steel, connected to each other by a tubular spiral, under the condenser (14) there is a condensate discharge tub (21), also made of acid-resistant steel, connected to the sterile flow duct (22), connected to a special sterile water storage tank (16).
Bibliography:Application Number: EP20220460025