SINGLE-CELL COMBINATORIAL INDEXED CYTOMETRY SEQUENCING
The development of DNA-barcoded antibodies to tag cell-surface molecules has enabled the use of droplet-based single cell sequencing (dsc-seq) to profile the surface proteomes of cells. Compared to flow and mass cytometry, the major limitation of current dsc-seq-based workflows is the high cost asso...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English French German |
Published |
03.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The development of DNA-barcoded antibodies to tag cell-surface molecules has enabled the use of droplet-based single cell sequencing (dsc-seq) to profile the surface proteomes of cells. Compared to flow and mass cytometry, the major limitation of current dsc-seq-based workflows is the high cost associated with profiling each cell, thus precluding its use in applications where millions of cells are required. Here, we introduce SCITO-seq, a new workflow that combines combinatorial indexing and commercially available dsc-seq to enable cost-effective cell surface proteomic profiling of greater than 105 cells per microfluidic reaction. We demonstrate SCITO-seq's feasibility and scalability by profiling mixed species cell lines and mixed human T and B lymphocytes. To further demonstrate its applicability, we used SCITO-seq to obtain cellular composition estimates in peripheral blood mononuclear cells across two donors that are reproducible and comparable to those obtained by mass cytometry. SCITO-seq can be extended to include simultaneous profiling of additional modalities such as transcripts and accessible chromatin or tracking of experimental perturbations such as genome edits or extracellular stimuli. |
---|---|
Bibliography: | Application Number: EP20210770536 |