SYSTEM AND METHOD FOR OPERATING MAGNETORHEOLOGICAL FLUID CLUTCH APPARATUS

A control system for controlling movements of an end effector connected to a clutch output of at least two magnetorheological (MR) fluid clutch apparatus, the control system comprises a clutch driver configured to drive the at least two MR fluid clutch apparatuses between at least a controlled slipp...

Full description

Saved in:
Bibliographic Details
Main Authors CHOUINARD, Patrick, PLANTE, Jean-Sebastien, LAROSE, Pascal, JULIO, Guifre
Format Patent
LanguageEnglish
French
German
Published 15.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A control system for controlling movements of an end effector connected to a clutch output of at least two magnetorheological (MR) fluid clutch apparatus, the control system comprises a clutch driver configured to drive the at least two MR fluid clutch apparatuses between at least a controlled slippage mode, in which slippage between a clutch input and the clutch output of the MR fluid clutch apparatuses varies, and a combined mode, in which said slippage between the clutch input and the clutch output is maintained below a given threshold simultaneously for both of the MR fluid clutch apparatuses, the two clutch outputs resisting movement of the end effector in the same direction. A motor driver is configured to control a motor output of at least one motor, the motor output coupled to at least one clutch input. A mode selector module is configured to receive signals representative of at least one movement parameter of the end effector, the mode selector module selecting a mode between at least the controlled slippage mode and the combined mode of the clutch driver based on the signals, and switching the selected mode based on the signals. A movement controller controls the clutch driver and the motor driver to displace the end effector based on at least one of the selected mode and on commanded movements of the end effector for the end effector to achieve the commanded movements.
Bibliography:Application Number: EP20190793519