OPTICAL GROUP FOR DETECTION LIGHT FOR A MICROSCOPE, METHOD FOR MICROSCOPY, AND MICROSCOPE

The invention relates to an optical group for detection light of a microscope, in particular a confocal scanning microscope, having an input plane (10) for the passage of detection light to be measured and having a detection beam path arranged downstream of the input plane for guiding the detection...

Full description

Saved in:
Bibliographic Details
Main Authors WALD, Matthias, ANHUT, Tiemo, SCHWEDT, Daniel
Format Patent
LanguageEnglish
French
German
Published 19.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The invention relates to an optical group for detection light of a microscope, in particular a confocal scanning microscope, having an input plane (10) for the passage of detection light to be measured and having a detection beam path arranged downstream of the input plane for guiding the detection light (11) into a detection plane (67), wherein the detection beam path has at least one first beam course (1) having first optical beam-guiding means, in particular first lenses and/or mirrors (20, 30, 34, 36, 58, 60, 66), for guiding the detection light into the detection plane. In the first beam course, the optical group has at least one dispersive device (26) for the spatial spectral splitting of the detection light to be measured and a manipulation device (49) for manipulating the spectrally spatially split detection light. The first optical beam-guiding means together with the dispersive device and with the manipulation device are arranged and designed to produce a spectrally separated and diffraction-limited image of the Input plane into the detection plane. The optical group preferably has a second beam course (2) having optical beam-guiding means and has a selection device (22) for selecting the first beam course (1) or the second beam course (2). In further aspects, the invention relates to a method for microscopy and to a microscope.
Bibliography:Application Number: EP20170788183