Riser fatigue monitoring

A system and method is provided for determining curvature for subsea riser system, including but not limited to drilling risers, steel catenary risers, lazy-wave catenary risers and riser jumpers, comprising the steps of: periodically measuring acceleration in a first lateral direction at said verti...

Full description

Saved in:
Bibliographic Details
Main Authors LI, SONGCHENG, GE, MICHAEL LONG, CAMPBELL, MICHAEL
Format Patent
LanguageEnglish
French
German
Published 04.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A system and method is provided for determining curvature for subsea riser system, including but not limited to drilling risers, steel catenary risers, lazy-wave catenary risers and riser jumpers, comprising the steps of: periodically measuring acceleration in a first lateral direction at said vertical position to obtain a first acceleration timetrace processing said first acceleration timetrace to obtain a first acceleration spectra; applying a transfer function to said first acceleration spectra to obtain a first curvature spectra; and processing said first curvature spectra to obtain a first curvature timetrace. Preferably the transfer function is determined by a method comprising the step of modelling the riser as a Tensioned Timoshenko Beam. The curvature may be used to determine stress and fatigue damage in a structure from motions measured at a single location or a combination of motions measured at a single location with or without tension measurement. The method can be used to determine curvature and hence stress and fatigue damage from any source of excitation, for example the excitation at the tension ring by the top tensioner system, and the vortex induced vibration locked in at any water depth.
Bibliography:Application Number: EP20140188554