EQUAL ORDER METHOD FOR FLUID FLOW SIMULATION
The present invention provides a method for solving the Navier-Stokes equation of viscous, incompressible laminar flows with moving free surfaces in complex domains. The method uses fixed mesh control volume-finite element techniques to track the flow. A gauss point velocity vector is defined as the...
Saved in:
Main Authors | , , |
---|---|
Format | Patent |
Language | English French German |
Published |
04.06.2003
|
Edition | 7 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The present invention provides a method for solving the Navier-Stokes equation of viscous, incompressible laminar flows with moving free surfaces in complex domains. The method uses fixed mesh control volume-finite element techniques to track the flow. A gauss point velocity vector is defined as the average of its nodal counterpart, such that the gauss point velocity vector is constant over the element. The gauss point velocity vector is then inserted into the continuity constraint to form the Poisson pressure equation for solving the pressure field. The solution to the Poisson pressure equation is unique, the common checker-board problem is therefore eliminated. The corrected pressure field is substituted into the momentum equations, so that the resulting velocity field satisfies the continuity equation. Since velocity and pressure are evaluated at the same order, the global mass conservation can be evaluated to machine round-off tolerances. |
---|---|
Bibliography: | Application Number: EP20010957546 |