SEPARATION OF CHARGED PARTICLES BY A SPATIALLY AND TEMPORALLY VARYING ELECTRIC FIELD

This invention relates to a method and device for separating charged particles according to their diffusivities in a separation medium by means of a spatially and temporarily varying electric potential. The method is particularly suited to sizing and separating DNA fragments, to generating DNA fragm...

Full description

Saved in:
Bibliographic Details
Main Authors WENT, GREGORY, T, ROTHBERG, JONATHAN, M, MULHERN, GREGORY, T, DEEM, MICHAEL, W, BADER, JOEL, S
Format Patent
LanguageEnglish
French
German
Published 19.01.2000
Edition7
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This invention relates to a method and device for separating charged particles according to their diffusivities in a separation medium by means of a spatially and temporarily varying electric potential. The method is particularly suited to sizing and separating DNA fragments, to generating DNA fragment length polymorphism patterns, and to sequencing DNA through the separation of DNA sequencing reaction products. The method takes advantage of the transport of charged particles subject to an electric potential that is cycled between an off-state (in which the potential is flat) and one or more on-states, in which the potential is preferably spatially periodic with a plurality of eccentrically shaped stationary potential wells. The potential wells are at constant spatial positions in the on-state. Differences in liquid-phase diffusivities lead to charged particle separation. A preferred embodiment of the device is microfabricated. A separation medium fills physically defined separation lanes in the device. Electrodes deposited substantially transverse to the lanes create the required electric potentials. Advantageously, injection ports allow sample loading, and special gating electrodes focus the sample prior to separation. The effects of thermal gradients are minimized by placing the device in contact with a thermal control module, preferably a plurality of Peltier-effect heat transfer devices. The small size of a microfabricated device permits rapid separation in a plurality of separation lanes.
Bibliography:Application Number: EP19970917713