一种面向典型农村道路遥感提取的深度学习方法
本发明公开了一种面向典型农村道路遥感提取的深度学习方法,包括:(1)获取用于典型农村道路提取的高分辨率遥感影像,并进行预处理,包括辐射定标、大气校正、几何校正、波段融合;(2)依据预处理后的高分遥感影像进行人工目视解译,获取道路矢量数据,并制作模型的训练与测试数据集;(3)在U-Net模型中加入优化残差模块、全局上下文注意力机制模块和DUpsampling模块,提出GDU-Net模型;(4)利用训练数据集进行模型训练,然后将测试数据集输入到模型中,进行道路提取与结果评价。本发明不仅能够正确提取农村道路的边界,而且增强了提取结果的完整性,显著提升了典型农村道路的提取精度,具有较好的应用价值。 T...
Saved in:
Format | Patent |
---|---|
Language | Chinese |
Published |
18.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | 本发明公开了一种面向典型农村道路遥感提取的深度学习方法,包括:(1)获取用于典型农村道路提取的高分辨率遥感影像,并进行预处理,包括辐射定标、大气校正、几何校正、波段融合;(2)依据预处理后的高分遥感影像进行人工目视解译,获取道路矢量数据,并制作模型的训练与测试数据集;(3)在U-Net模型中加入优化残差模块、全局上下文注意力机制模块和DUpsampling模块,提出GDU-Net模型;(4)利用训练数据集进行模型训练,然后将测试数据集输入到模型中,进行道路提取与结果评价。本发明不仅能够正确提取农村道路的边界,而且增强了提取结果的完整性,显著提升了典型农村道路的提取精度,具有较好的应用价值。
The invention discloses a deep learning method for typical rural road remote sensing extraction, and the method comprises the steps: (1), obtaining a high-resolution remote sensing image for typical rural road extraction, and carrying out the preprocessing, including radiometric calibration, atmospheric correction, geometric correction and wave band fusion; (2) performing artificial visual interpretation according to the preprocessed high-resolution remote sensing image to obtain road vector data, and making a training and testing data set of the model; (3) adding an optimization residual module, a global context attention mechanism module and a DUpsampling module into the U-Net model, and proposing a GDU-Net model; |
---|---|
AbstractList | 本发明公开了一种面向典型农村道路遥感提取的深度学习方法,包括:(1)获取用于典型农村道路提取的高分辨率遥感影像,并进行预处理,包括辐射定标、大气校正、几何校正、波段融合;(2)依据预处理后的高分遥感影像进行人工目视解译,获取道路矢量数据,并制作模型的训练与测试数据集;(3)在U-Net模型中加入优化残差模块、全局上下文注意力机制模块和DUpsampling模块,提出GDU-Net模型;(4)利用训练数据集进行模型训练,然后将测试数据集输入到模型中,进行道路提取与结果评价。本发明不仅能够正确提取农村道路的边界,而且增强了提取结果的完整性,显著提升了典型农村道路的提取精度,具有较好的应用价值。
The invention discloses a deep learning method for typical rural road remote sensing extraction, and the method comprises the steps: (1), obtaining a high-resolution remote sensing image for typical rural road extraction, and carrying out the preprocessing, including radiometric calibration, atmospheric correction, geometric correction and wave band fusion; (2) performing artificial visual interpretation according to the preprocessed high-resolution remote sensing image to obtain road vector data, and making a training and testing data set of the model; (3) adding an optimization residual module, a global context attention mechanism module and a DUpsampling module into the U-Net model, and proposing a GDU-Net model; |
BookMark | eNrjYmDJy89L5WSwf7Kj4fny3pdzFz2dMPFp646n87qfts15Nnfiy8bJL7avf9m49FnL_Gf9E572T3s-q-XZ9o1Pdy17unbZk50Lnk3b-WzzVB4G1rTEnOJUXijNzaDk5hri7KGbWpAfn1pckJicmpdaEu_sZ2hobmhubGpq7uRkTJQiAOtwSAg |
ContentType | Patent |
DBID | EVB |
DatabaseName | esp@cenet |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: EVB name: esp@cenet url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Chemistry Sciences Physics |
ExternalDocumentID | CN117173557BB |
GroupedDBID | EVB |
ID | FETCH-epo_espacenet_CN117173557BB3 |
IEDL.DBID | EVB |
IngestDate | Fri Oct 25 05:38:29 EDT 2024 |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Chinese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-epo_espacenet_CN117173557BB3 |
Notes | Application Number: CN202310972067 |
OpenAccessLink | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241018&DB=EPODOC&CC=CN&NR=117173557B |
ParticipantIDs | epo_espacenet_CN117173557BB |
PublicationCentury | 2000 |
PublicationDate | 20241018 |
PublicationDateYYYYMMDD | 2024-10-18 |
PublicationDate_xml | – month: 10 year: 2024 text: 20241018 day: 18 |
PublicationDecade | 2020 |
PublicationYear | 2024 |
Score | 3.5584846 |
Snippet | ... |
SourceID | epo |
SourceType | Open Access Repository |
SubjectTerms | CALCULATING COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS COMPUTING COUNTING PHYSICS |
Title | 一种面向典型农村道路遥感提取的深度学习方法 |
URI | https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241018&DB=EPODOC&locale=&CC=CN&NR=117173557B |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQsUxKNDayTE3TTUxKTdU1SbYw0E1MNTPWtTRLNjJKsUyyTAUfYOrrZ-YRauIVYRrBxJAF2wsDPie0HHw4IjBHJQPzewm4vC5ADGK5gNdWFusnZQKF8u3dQmxd1KC9Y2B1ZADMzi5Otq4B_i7-zmrOzrbOfmp-QbaGhqDpZlNTcydmBlZgM9oc3GkLcwLtSilArlLcBBnYAoCm5ZUIMTBVZQgzcDrDbl4TZuDwhU54CzOwg1doJhcDBaG5sFiEwf7Jjobny3tfzl30dMLEp607ns7rfto259nciS8bJ7_Yvv5l49JnLfOf9U942j_t-ayWZ9s3Pt217OnaZU92Lng2beezzVNFGZTcXEOcPXSBboqHB0C8sx_C-U7GYgwsefl5qRIMCoaWyWaJqcA-rGVasol5WqpFsrmRsalhSopBcqpZioWJJIM0HoOk8MpKM3CBwhNUTBtayDCwlBSVpsoC69-SJDlwwAEA95mfRw |
link.rule.ids | 230,309,783,888,25577,76883 |
linkProvider | European Patent Office |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQsUxKNDayTE3TTUxKTdU1SbYw0E1MNTPWtTRLNjJKsUyyTAUfYOrrZ-YRauIVYRrBxJAF2wsDPie0HHw4IjBHJQPzewm4vC5ADGK5gNdWFusnZQKF8u3dQmxd1KC9Y2B1ZADMzi5Otq4B_i7-zmrOzrbOfmp-QbaGhqDpZlNTcydmBlZgE9sC3FUKcwLtSilArlLcBBnYAoCm5ZUIMTBVZQgzcDrDbl4TZuDwhU54CzOwg1doJhcDBaG5sFiEwf7Jjobny3tfzl30dMLEp607ns7rfto259nciS8bJ7_Yvv5l49JnLfOf9U942j_t-ayWZ9s3Pt217OnaZU92Lng2beezzVNFGZTcXEOcPXSBboqHB0C8sx_C-U7GYgwsefl5qRIMCoaWyWaJqcA-rGVasol5WqpFsrmRsalhSopBcqpZioWJJIM0HoOk8MrKM3B6hPj6xPt4-nlLM3CBwhZUZBtayDCwlBSVpsoC6-KSJDlwIAIAl_miNw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=%E4%B8%80%E7%A7%8D%E9%9D%A2%E5%90%91%E5%85%B8%E5%9E%8B%E5%86%9C%E6%9D%91%E9%81%93%E8%B7%AF%E9%81%A5%E6%84%9F%E6%8F%90%E5%8F%96%E7%9A%84%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95&rft.date=2024-10-18&rft.externalDBID=B&rft.externalDocID=CN117173557BB |