一种面向典型农村道路遥感提取的深度学习方法

本发明公开了一种面向典型农村道路遥感提取的深度学习方法,包括:(1)获取用于典型农村道路提取的高分辨率遥感影像,并进行预处理,包括辐射定标、大气校正、几何校正、波段融合;(2)依据预处理后的高分遥感影像进行人工目视解译,获取道路矢量数据,并制作模型的训练与测试数据集;(3)在U-Net模型中加入优化残差模块、全局上下文注意力机制模块和DUpsampling模块,提出GDU-Net模型;(4)利用训练数据集进行模型训练,然后将测试数据集输入到模型中,进行道路提取与结果评价。本发明不仅能够正确提取农村道路的边界,而且增强了提取结果的完整性,显著提升了典型农村道路的提取精度,具有较好的应用价值。 T...

Full description

Saved in:
Bibliographic Details
Format Patent
LanguageChinese
Published 18.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract 本发明公开了一种面向典型农村道路遥感提取的深度学习方法,包括:(1)获取用于典型农村道路提取的高分辨率遥感影像,并进行预处理,包括辐射定标、大气校正、几何校正、波段融合;(2)依据预处理后的高分遥感影像进行人工目视解译,获取道路矢量数据,并制作模型的训练与测试数据集;(3)在U-Net模型中加入优化残差模块、全局上下文注意力机制模块和DUpsampling模块,提出GDU-Net模型;(4)利用训练数据集进行模型训练,然后将测试数据集输入到模型中,进行道路提取与结果评价。本发明不仅能够正确提取农村道路的边界,而且增强了提取结果的完整性,显著提升了典型农村道路的提取精度,具有较好的应用价值。 The invention discloses a deep learning method for typical rural road remote sensing extraction, and the method comprises the steps: (1), obtaining a high-resolution remote sensing image for typical rural road extraction, and carrying out the preprocessing, including radiometric calibration, atmospheric correction, geometric correction and wave band fusion; (2) performing artificial visual interpretation according to the preprocessed high-resolution remote sensing image to obtain road vector data, and making a training and testing data set of the model; (3) adding an optimization residual module, a global context attention mechanism module and a DUpsampling module into the U-Net model, and proposing a GDU-Net model;
AbstractList 本发明公开了一种面向典型农村道路遥感提取的深度学习方法,包括:(1)获取用于典型农村道路提取的高分辨率遥感影像,并进行预处理,包括辐射定标、大气校正、几何校正、波段融合;(2)依据预处理后的高分遥感影像进行人工目视解译,获取道路矢量数据,并制作模型的训练与测试数据集;(3)在U-Net模型中加入优化残差模块、全局上下文注意力机制模块和DUpsampling模块,提出GDU-Net模型;(4)利用训练数据集进行模型训练,然后将测试数据集输入到模型中,进行道路提取与结果评价。本发明不仅能够正确提取农村道路的边界,而且增强了提取结果的完整性,显著提升了典型农村道路的提取精度,具有较好的应用价值。 The invention discloses a deep learning method for typical rural road remote sensing extraction, and the method comprises the steps: (1), obtaining a high-resolution remote sensing image for typical rural road extraction, and carrying out the preprocessing, including radiometric calibration, atmospheric correction, geometric correction and wave band fusion; (2) performing artificial visual interpretation according to the preprocessed high-resolution remote sensing image to obtain road vector data, and making a training and testing data set of the model; (3) adding an optimization residual module, a global context attention mechanism module and a DUpsampling module into the U-Net model, and proposing a GDU-Net model;
BookMark eNrjYmDJy89L5WSwf7Kj4fny3pdzFz2dMPFp646n87qfts15Nnfiy8bJL7avf9m49FnL_Gf9E572T3s-q-XZ9o1Pdy17unbZk50Lnk3b-WzzVB4G1rTEnOJUXijNzaDk5hri7KGbWpAfn1pckJicmpdaEu_sZ2hobmhubGpq7uRkTJQiAOtwSAg
ContentType Patent
DBID EVB
DatabaseName esp@cenet
DatabaseTitleList
Database_xml – sequence: 1
  dbid: EVB
  name: esp@cenet
  url: http://worldwide.espacenet.com/singleLineSearch?locale=en_EP
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Sciences
Physics
ExternalDocumentID CN117173557BB
GroupedDBID EVB
ID FETCH-epo_espacenet_CN117173557BB3
IEDL.DBID EVB
IngestDate Fri Oct 25 05:38:29 EDT 2024
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Chinese
LinkModel DirectLink
MergedId FETCHMERGED-epo_espacenet_CN117173557BB3
Notes Application Number: CN202310972067
OpenAccessLink https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241018&DB=EPODOC&CC=CN&NR=117173557B
ParticipantIDs epo_espacenet_CN117173557BB
PublicationCentury 2000
PublicationDate 20241018
PublicationDateYYYYMMDD 2024-10-18
PublicationDate_xml – month: 10
  year: 2024
  text: 20241018
  day: 18
PublicationDecade 2020
PublicationYear 2024
Score 3.5584846
Snippet ...
SourceID epo
SourceType Open Access Repository
SubjectTerms CALCULATING
COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
COMPUTING
COUNTING
PHYSICS
Title 一种面向典型农村道路遥感提取的深度学习方法
URI https://worldwide.espacenet.com/publicationDetails/biblio?FT=D&date=20241018&DB=EPODOC&locale=&CC=CN&NR=117173557B
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQsUxKNDayTE3TTUxKTdU1SbYw0E1MNTPWtTRLNjJKsUyyTAUfYOrrZ-YRauIVYRrBxJAF2wsDPie0HHw4IjBHJQPzewm4vC5ADGK5gNdWFusnZQKF8u3dQmxd1KC9Y2B1ZADMzi5Otq4B_i7-zmrOzrbOfmp-QbaGhqDpZlNTcydmBlZgM9oc3GkLcwLtSilArlLcBBnYAoCm5ZUIMTBVZQgzcDrDbl4TZuDwhU54CzOwg1doJhcDBaG5sFiEwf7Jjobny3tfzl30dMLEp607ns7rfto259nciS8bJ7_Yvv5l49JnLfOf9U942j_t-ayWZ9s3Pt217OnaZU92Lng2beezzVNFGZTcXEOcPXSBboqHB0C8sx_C-U7GYgwsefl5qRIMCoaWyWaJqcA-rGVasol5WqpFsrmRsalhSopBcqpZioWJJIM0HoOk8MpKM3CBwhNUTBtayDCwlBSVpsoC69-SJDlwwAEA95mfRw
link.rule.ids 230,309,783,888,25577,76883
linkProvider European Patent Office
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwY2BQsUxKNDayTE3TTUxKTdU1SbYw0E1MNTPWtTRLNjJKsUyyTAUfYOrrZ-YRauIVYRrBxJAF2wsDPie0HHw4IjBHJQPzewm4vC5ADGK5gNdWFusnZQKF8u3dQmxd1KC9Y2B1ZADMzi5Otq4B_i7-zmrOzrbOfmp-QbaGhqDpZlNTcydmBlZgE9sC3FUKcwLtSilArlLcBBnYAoCm5ZUIMTBVZQgzcDrDbl4TZuDwhU54CzOwg1doJhcDBaG5sFiEwf7Jjobny3tfzl30dMLEp607ns7rfto259nciS8bJ7_Yvv5l49JnLfOf9U942j_t-ayWZ9s3Pt217OnaZU92Lng2beezzVNFGZTcXEOcPXSBboqHB0C8sx_C-U7GYgwsefl5qRIMCoaWyWaJqcA-rGVasol5WqpFsrmRsalhSopBcqpZioWJJIM0HoOk8MrKM3B6hPj6xPt4-nlLM3CBwhZUZBtayDCwlBSVpsoC6-KSJDlwIAIAl_miNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Apatent&rft.title=%E4%B8%80%E7%A7%8D%E9%9D%A2%E5%90%91%E5%85%B8%E5%9E%8B%E5%86%9C%E6%9D%91%E9%81%93%E8%B7%AF%E9%81%A5%E6%84%9F%E6%8F%90%E5%8F%96%E7%9A%84%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%A0%E6%96%B9%E6%B3%95&rft.date=2024-10-18&rft.externalDBID=B&rft.externalDocID=CN117173557BB