一种面向典型农村道路遥感提取的深度学习方法

本发明公开了一种面向典型农村道路遥感提取的深度学习方法,包括:(1)获取用于典型农村道路提取的高分辨率遥感影像,并进行预处理,包括辐射定标、大气校正、几何校正、波段融合;(2)依据预处理后的高分遥感影像进行人工目视解译,获取道路矢量数据,并制作模型的训练与测试数据集;(3)在U-Net模型中加入优化残差模块、全局上下文注意力机制模块和DUpsampling模块,提出GDU-Net模型;(4)利用训练数据集进行模型训练,然后将测试数据集输入到模型中,进行道路提取与结果评价。本发明不仅能够正确提取农村道路的边界,而且增强了提取结果的完整性,显著提升了典型农村道路的提取精度,具有较好的应用价值。 T...

Full description

Saved in:
Bibliographic Details
Format Patent
LanguageChinese
Published 18.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:本发明公开了一种面向典型农村道路遥感提取的深度学习方法,包括:(1)获取用于典型农村道路提取的高分辨率遥感影像,并进行预处理,包括辐射定标、大气校正、几何校正、波段融合;(2)依据预处理后的高分遥感影像进行人工目视解译,获取道路矢量数据,并制作模型的训练与测试数据集;(3)在U-Net模型中加入优化残差模块、全局上下文注意力机制模块和DUpsampling模块,提出GDU-Net模型;(4)利用训练数据集进行模型训练,然后将测试数据集输入到模型中,进行道路提取与结果评价。本发明不仅能够正确提取农村道路的边界,而且增强了提取结果的完整性,显著提升了典型农村道路的提取精度,具有较好的应用价值。 The invention discloses a deep learning method for typical rural road remote sensing extraction, and the method comprises the steps: (1), obtaining a high-resolution remote sensing image for typical rural road extraction, and carrying out the preprocessing, including radiometric calibration, atmospheric correction, geometric correction and wave band fusion; (2) performing artificial visual interpretation according to the preprocessed high-resolution remote sensing image to obtain road vector data, and making a training and testing data set of the model; (3) adding an optimization residual module, a global context attention mechanism module and a DUpsampling module into the U-Net model, and proposing a GDU-Net model;
Bibliography:Application Number: CN202310972067