MACHINE LEARNING TO PREDICTE CANCER
Disclosed herein are methods for determining a subject level risk of metastatic cancer comprising training and/or deploying a model to determine: 1) a lymph node level risk implied by an individual lymph node; and/or 2) a lymph node-dependent subject level risk. Thus, the method may identify high or...
Saved in:
Main Authors | , , , |
---|---|
Format | Patent |
Language | Chinese English |
Published |
03.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Summary: | Disclosed herein are methods for determining a subject level risk of metastatic cancer comprising training and/or deploying a model to determine: 1) a lymph node level risk implied by an individual lymph node; and/or 2) a lymph node-dependent subject level risk. Thus, the method may identify high or low risk patients with sarcoidosis and optionally enable guidance of intervention in cancer patients, for example via treatment.
本文公开了用于确定转移癌的受试者水平风险的方法,其包括训练和/或部署模型以确定:1)个体淋巴结累及的淋巴结水平风险;以及/或者2)淋巴结累及的受试者水平风险。因此,该方法可识别具有结节病的高风险或低风险的患者,并且任选地使得能够例如经由治疗来指导癌症患者的干预。 |
---|---|
Bibliography: | Application Number: CN202180092579 |