基于社交文本的网络舆情话题识别方法和系统

本发明提供一种基于社交文本的网络舆情话题识别方法,涉及文本数据处理技术领域。本发明考虑到噪音词对文本话题发现的影响,将生成词中的主题词和生成词的噪声词分开,将噪音词过滤并推断出每个词的主题词分布,从而能准确的判断出生成该词对应的网络舆情话题,提高网络舆情话题识别的准确率,为后续的舆情监测、政府或者相关管理部门舆情引导和个性化营销等实际场景提供准确的数据支持。 The invention provides an online public opinion topic recognition method based on social texts, and relates to the tech...

Full description

Saved in:
Bibliographic Details
Format Patent
LanguageChinese
Published 07.07.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:本发明提供一种基于社交文本的网络舆情话题识别方法,涉及文本数据处理技术领域。本发明考虑到噪音词对文本话题发现的影响,将生成词中的主题词和生成词的噪声词分开,将噪音词过滤并推断出每个词的主题词分布,从而能准确的判断出生成该词对应的网络舆情话题,提高网络舆情话题识别的准确率,为后续的舆情监测、政府或者相关管理部门舆情引导和个性化营销等实际场景提供准确的数据支持。 The invention provides an online public opinion topic recognition method based on social texts, and relates to the technical field of text data processing. According to the method, the influence of noise words on text topic discovery is considered,subject words in the generated words are separatedfrom noise words of the generated words; the noise words are filtered, and the subject word distribution of each word is deduced, so that the network public opinion topics corresponding to the words can be accurately judged and generated, the identification accuracy of the network public opinion topics is improved, and accurate data support is provided for subsequent public opinion monitoring, government or related management department public opinion guidance, personalized marketing and other actual scenes.
Bibliography:Application Number: CN202010150112