基于模型融合的案件知情者识别方法
本发明公开了一种基于模型融合的案件知情者识别方法,包括以下步骤,提取各个被测试者在观看单一图片时的32维眼动特征;基于32维眼动特征训练支撑向量机模型A,来识别每个被测试者在单一图片时的言语置信度,并输出每个被测试者在单一图片时的概率f1(xi)和f2(xi);提取各个被测试者在观看组合图片时的110维眼动特征;基于110维眼动特征训练支撑向量机模型B,来识别每个被测试者在组合图片时的言语置信度,并输出每个被测试者在组合图片时的概率g1(xi)和g2(xi);运用乘法规则,融合支撑向量机模型A和B的分类器概率,得到联合概率,取各个被测试者的概率最大的类别为最后的决策结果。本发明可以有效抑制反测...
Saved in:
Format | Patent |
---|---|
Language | Chinese |
Published |
09.04.2021
|
Subjects | |
Online Access | Get full text |
Cover
Summary: | 本发明公开了一种基于模型融合的案件知情者识别方法,包括以下步骤,提取各个被测试者在观看单一图片时的32维眼动特征;基于32维眼动特征训练支撑向量机模型A,来识别每个被测试者在单一图片时的言语置信度,并输出每个被测试者在单一图片时的概率f1(xi)和f2(xi);提取各个被测试者在观看组合图片时的110维眼动特征;基于110维眼动特征训练支撑向量机模型B,来识别每个被测试者在组合图片时的言语置信度,并输出每个被测试者在组合图片时的概率g1(xi)和g2(xi);运用乘法规则,融合支撑向量机模型A和B的分类器概率,得到联合概率,取各个被测试者的概率最大的类别为最后的决策结果。本发明可以有效抑制反测谎手段,提高了算法效率。
The invention discloses a case insider identification method based on model fusion, comprising the following steps of extracting 32-dimensional eye movement features of each subject when viewing a single picture; based on a 32-dimensional eye movement feature train support vector machine model A, recognizing that verbal confidence of each subject in a single picture, and outputting the probabilityf1 (xi) and f2 (xi) of each subject in a single picture; extracting 110-dimensional eye movement features of each subject when viewing a combined picture; training a support vector machine model B based on a 110-dimensional eye movement feature to recognize that verbal confidence level of each subject when com |
---|---|
Bibliography: | Application Number: CN201811135018 |