一种基于大数据挖掘的针织MES生产计划与调度方法
本发明公开了一种基于大数据挖掘的针织MES生产计划与调度方法,属于纺织工程应用领域。本发明方法包括如下步骤,S1、建立多维针织生产数据模型;S2、基于Hadoop分布式平台构建大数据分析平台;S3、在MapReduce框架下运用Apriori关联规则挖掘算法对计划调度的约束因素进行挖掘;S4、根据合同需求分析订单排产优先级;S5、综合排产优先级与计划调度的约束因素,得到订单排产甘特图;S6、实时监控ERP与ZigBee数据,发现订单变更交货期、织造工艺更新、织机突发故障等异常事件时,动态调整生产计划。 The invention discloses a knitting MES product...
Saved in:
Format | Patent |
---|---|
Language | Chinese |
Published |
06.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 本发明公开了一种基于大数据挖掘的针织MES生产计划与调度方法,属于纺织工程应用领域。本发明方法包括如下步骤,S1、建立多维针织生产数据模型;S2、基于Hadoop分布式平台构建大数据分析平台;S3、在MapReduce框架下运用Apriori关联规则挖掘算法对计划调度的约束因素进行挖掘;S4、根据合同需求分析订单排产优先级;S5、综合排产优先级与计划调度的约束因素,得到订单排产甘特图;S6、实时监控ERP与ZigBee数据,发现订单变更交货期、织造工艺更新、织机突发故障等异常事件时,动态调整生产计划。
The invention discloses a knitting MES production planning and scheduling method based on big data mining, wherein the method belongs to the field of textile engineering application. The method comprises the following steps of S1, establishing a multidirectional knitting production data model; S2, establishing a big data analyzing platform based on a Hadoop distributed platform; S3, mining a planning scheduling restraining factor in a MapReduce frame by means of an Apriori correlation rule mining algorithm; S4, analyzing an order arranging priority according to a contract requirement; S5, integrating the arranging priority and the planning scheduling restraining factor, and obtaining an order arranging Gantt chart; and S6, performing real-time monitoring on ER |
---|---|
Bibliography: | Application Number: CN20171457899 |