Rationally designed an innovative proximity labeling near-infrared fluorogenic probe for imaging of peroxynitrite in acute lung injury

Acute lung injury (ALI) is a serious clinical condition with a high mortality rate. Oxidative stress and inflammatory responses play pivotal roles in the pathogenesis of ALI. ONOO− is a key mediator that exacerbates oxidative damage and microvascular permeability in ALI. Accurate detection of ONOO−...

Full description

Saved in:
Bibliographic Details
Published inChinese chemical letters
Main Authors Tang, Dandan, Xu, Ningge, Fu, Yuyang, Peng, Wei, Wu, Jinsheng, Liu, Heng, Yu, Fabiao
Format Journal Article
LanguageEnglish
Published Elsevier B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Acute lung injury (ALI) is a serious clinical condition with a high mortality rate. Oxidative stress and inflammatory responses play pivotal roles in the pathogenesis of ALI. ONOO− is a key mediator that exacerbates oxidative damage and microvascular permeability in ALI. Accurate detection of ONOO− would facilitate early diagnosis and intervention in ALI. Near-infrared fluorescence (NIRF) probes offer new solutions due to their sensitivity, depth of tissue penetration, and imaging capabilities. However, the developed ONOO− fluorescent probes face problems such as interference from other reactive oxygen species and easy intracellular diffusion. To address these issues, we introduced an innovative self-immobilizing NIRF probe, DCI2F-OTf, which was capable of monitoring ONOO−in vitro and in vivo. Importantly, leveraging the high reactivity of the methylene quinone (QM) intermediate, DCI2F-OTf was able to covalently label proteins in the presence of ONOO−, enabling in situ imaging. In mice models of ALI, DCI2F-OTf enabled real-time imaging of ONOO− levels and found that ONOO− was tightly correlated with the progression of ALI. Our findings demonstrated that DCI2F-OTf was a promising chemical tool for the detection of ONOO−, which could help to gain insight into the pathogenesis of ALI and monitor treatment efficacy. An innovative self-immobilizing NIRF probe DCI2F-OTf was capable of monitoring ONOO−in vitro and in vivo. DCI2F-OTf was able to covalently label proteins in the presence of ONOO−, enabling in situ imaging. In mice models of ALI, DCI2F-OTf enabled real-time imaging of ONOO− levels and found that ONOO− was tightly correlated with the progression of ALI. [Display omitted]
ISSN:1001-8417
1878-5964
DOI:10.1016/j.cclet.2024.110082