Effect of Desuberinization and Delignification on the Cork Cell Walls of Cerasus jamasakura (Siebold ex Koidz.) H. Ohba using FTIR Spectroscopy and Microscopic Observation

Bark, the outermost tissue, plays an important role in protecting trees from damage induced by living organisms and the surrounding environment. Bark differs from the xylem primarily by the presence of suberin in cork cell walls. However, few studies have examined the role of suberin and its interac...

Full description

Saved in:
Bibliographic Details
Published inBioresources Vol. 19; no. 3; pp. 5129 - 5140
Main Authors Hayato Saito, Takahisa Nakai, Keisuke Toba, Toru Kanbayashi
Format Journal Article
LanguageEnglish
Published North Carolina State University 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bark, the outermost tissue, plays an important role in protecting trees from damage induced by living organisms and the surrounding environment. Bark differs from the xylem primarily by the presence of suberin in cork cell walls. However, few studies have examined the role of suberin and its interactions with other chemical components in the cork. Consequently, this study aimed to understand the distribution of chemical components, including suberin and lignin, and their respective roles in cork cell walls, using Cerasus jamasakura (Siebold ex Koidz.) H. Ohba. Suberin and lignin were gradually and selectively removed from thin strip specimens. Fourier transform infrared (FTIR) spectroscopy suggested that desuberinization removed both suberin and part of the other matrix substances within a few minutes of treatment, whereas delignification exclusively removed lignin. Further microscopic observation revealed that suberin present was mainly in the secondary wall of cork cells, whereas lignin was present in both the tertiary wall and compound middle lamella. In addition, the cell wall collapse of the cork was only found in desuberinized specimens, whereas delignified specimens only showed monotonic contraction. Taken together, these results suggest that the presence of suberin in the cork contributes to the shape stability of cork cell walls.
ISSN:1930-2126