Continuity of the quenching time in a semilinear heat equation with Neumann boundary condition

This paper concerns the study of a semilinear parabolic equation subject to Neumann boundary conditions and positive initial datum. Under some assumptions, we show that the solution of the above problem quenches in a finite time and estimate its quenching time. We also prove the continuity of the qu...

Full description

Saved in:
Bibliographic Details
Published inJournal of numerical analysis and approximation theory Vol. 39; no. 1
Main Authors Firmin K. N'gohisse, Théodore K. Boni
Format Journal Article
LanguageEnglish
Published Publishing House of the Romanian Academy 01.02.2010
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper concerns the study of a semilinear parabolic equation subject to Neumann boundary conditions and positive initial datum. Under some assumptions, we show that the solution of the above problem quenches in a finite time and estimate its quenching time. We also prove the continuity of the quenching time as a function of the initial datum. Finally, we give some numerical results to illustrate our analysis.
ISSN:2457-6794
2501-059X