Negative correlation between phospholipase and esterase activity produced by Fusarium isolates
Fusarium species have emerged as one of the more outstanding groups of clinically important filamentous fungi, causing localized and life-threatening invasive infections with high morbidity and mortality. The ability to produce different types of hydrolytic enzymes is thought to be an important viru...
Saved in:
Published in | Brazilian journal of medical and biological research Vol. 45; no. 5; pp. 411 - 416 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Associação Brasileira de Divulgação Científica
01.05.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fusarium species have emerged as one of the more outstanding groups of clinically important filamentous fungi, causing localized and life-threatening invasive infections with high morbidity and mortality. The ability to produce different types of hydrolytic enzymes is thought to be an important virulence mechanism of fungal pathogens and could be associated with the environment of the microorganism. Here, we have measured the production of two distinct lipolytic enzymes, phospholipase and esterase, by sixteen Fusarium isolates recovered from the hospital environment, immunocompromised patients' blood cultures, foot interdigital space scrapings from immunocompromised patients, and foot interdigital space scrapings from immunocompetent patients (4 isolates each). Fourteen of these 16 isolates were identified asFusarium solani species complex (FSSC) and two were identified as F. oxysporum species complex (FOSC). Some relevant genus characteristics were visualized by light and electron microscopy such as curved and multicelled macroconidia with 3 or 4 septa, microconidia, phialides, and abundant chlamydospores. All Fusarium isolates were able to produce esterase and phospholipase under the experimental conditions. However, a negative correlation was observed between these two enzymes, indicating that a Fusarium isolate with high phospholipase activity has low esterase activity and vice versa. In addition, Fusarium isolated from clinical material produced more phospholipases, while environmental strains produced more esterases. These observations may be correlated with the different types of substrates that these fungi need to degrade during their nutrition processes. |
---|---|
ISSN: | 0100-879X 1414-431X |