Inhibitory Mechanism of Escherichia coli Adhesion to Caco-2 Monolayers by Polysaccharides from Bangia fusco-purpurea

In this study, the effect of Bangia fusco-purpurea polysaccharide (BFP) on Escherichia coli adhesion to Caco-2 monolayers and its potential mechanism was studied using an in vitro human colon adenocarcinoma cell (Caco-2) monolayer model. The effect of BFP on the adhesion of E. coli to Caco-2 monolay...

Full description

Saved in:
Bibliographic Details
Published inShípĭn kēxué Vol. 45; no. 17; pp. 9 - 16
Main Author DUAN Shushu, ZHENG Mingjing, HONG Tao, ZHU Yanbing, NI Hui, JIANG Zedong
Format Magazine Article
LanguageEnglish
Published China Food Publishing Company 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this study, the effect of Bangia fusco-purpurea polysaccharide (BFP) on Escherichia coli adhesion to Caco-2 monolayers and its potential mechanism was studied using an in vitro human colon adenocarcinoma cell (Caco-2) monolayer model. The effect of BFP on the adhesion of E. coli to Caco-2 monolayers was analyzed by fluorescence labeling with carboxyfluorescein diacetate and succinimidyl ester (CFDA-SE), and its effect on the gene expression of integrin β1 in Caco-2 cells, the adhesin FimH in E. coli, and inflammatory factors (IL-1β, IL-8 and TNF-α) induced by E. coli adhesion to Caco-2 cells and the tight junction proteins zonula occludens 1 (ZO-1) and occludin were analyzed using real-time polymerase chain reaction (real-time PCR). Also, the protein expression of ZO-1 and occludin in Caco-2 monolayers was detected using Western Blot analysis. Our results showed that BFP at concentrations of 400–800 μg/mL significantly inhibited the adhesion of E. coli to Caco-2 monolayers mainly by down-regulating the gene expression of integrin β1 in Caco-2 cells and FimH in E. coli. In addition, BFP significantly inhibited the up-regulation of inflammatory cytokine gene expression and the down-regulation of ZO-1 and occludin protein and gene expression induced by in Caco-2 cells induced by E. coli and its culture supernatant. In conclusion, BFP inhibited the adhesion of E. coli to Caco-2 cell monolayers, which will lay a scientific basis for the development of novel antimicrobial products and the high-value utilization and deep processing of BFP.
ISSN:1002-6630
DOI:10.7506/spkx1002-6630-20230719-204