An optimized method for RNA extraction from the polyurethane oligomer degrading strain Pseudomonas capeferrum TDA1 growing on aromatic substrates such as phenol and 2,4-diaminotoluene

Bacterial degradation of xenobiotic compounds is an intense field of research already for decades. Lately, this research is complemented by downstream applications including Next Generation Sequencing (NGS), RT-PCR, qPCR, and RNA-seq. For most of these molecular applications, high-quality RNA is a f...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 11; p. e0260002
Main Authors María José Cárdenas Espinosa, Tabea Schmidgall, Georg Wagner, Uwe Kappelmeyer, Stephan Schreiber, Hermann J Heipieper, Christian Eberlein
Format Journal Article
LanguageEnglish
Published Public Library of Science (PLoS) 01.01.2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:Bacterial degradation of xenobiotic compounds is an intense field of research already for decades. Lately, this research is complemented by downstream applications including Next Generation Sequencing (NGS), RT-PCR, qPCR, and RNA-seq. For most of these molecular applications, high-quality RNA is a fundamental necessity. However, during the degradation of aromatic substrates, phenolic or polyphenolic compounds such as polycatechols are formed and interact irreversibly with nucleic acids, making RNA extraction from these sources a major challenge. Therefore, we established a method for total RNA extraction from the aromatic degrading Pseudomonas capeferrum TDA1 based on RNAzol® RT, glycogen and a final cleaning step. It yields a high-quality RNA from cells grown on TDA1 and on phenol compared to standard assays conducted in the study. To our knowledge, this is the first report tackling the problem of polyphenolic compound interference with total RNA isolation in bacteria. It might be considered as a guideline to improve total RNA extraction from other bacterial species.
ISSN:1932-6203
DOI:10.1371/journal.pone.0260002