Determination of hemicellulose, cellulose, holocellulose and lignin content using FTIR in Calycophyllum spruceanum (Benth.) K. Schum. and Guazuma crinita Lam

Capirona (Calycophyllum spruceanum (Benth.) K. Schum.) and Bolaina (Guazuma crinita Lam.) are fast-growing Amazonian trees with increasing demand in timber industry. Therefore, it is necessary to determine the content of cellulose, hemicellulose, holocellulose and lignin in juvenile trees to acceler...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 16; no. 10; p. e0256559
Main Authors Rosario Javier-Astete, Jorge Jimenez-Davalos, Gaston Zolla
Format Journal Article
LanguageEnglish
Published Public Library of Science (PLoS) 01.01.2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:Capirona (Calycophyllum spruceanum (Benth.) K. Schum.) and Bolaina (Guazuma crinita Lam.) are fast-growing Amazonian trees with increasing demand in timber industry. Therefore, it is necessary to determine the content of cellulose, hemicellulose, holocellulose and lignin in juvenile trees to accelerate forest breeding programs. The aim of this study was to identify chemical differences between apical and basal stem of Capirona and Bolaina to develop models for estimating the chemical composition using Fourier transform infrared (FTIR) spectra. FTIR-ATR spectra were obtained from 150 samples for each species that were 1.8 year-old. The results showed significant differences between the apical and basal stem for each species in terms of cellulose, hemicellulose, holocellulose and lignin content. This variability was useful to build partial least squares (PLS) models from the FTIR spectra and they were evaluated by root mean squared error of predictions (RMSEP) and ratio of performance to deviation (RPD). Lignin content was efficiently predicted in Capirona (RMSEP = 0.48, RPD > 2) and Bolaina (RMSEP = 0.81, RPD > 2). In Capirona, the predictive power of cellulose, hemicellulose and holocellulose models (0.68 < RMSEP < 2.06, 1.60 < RPD < 1.96) were high enough to predict wood chemical composition. In Bolaina, model for cellulose attained an excellent predictive power (RMSEP = 1.82, RPD = 6.14) while models for hemicellulose and holocellulose attained a good predictive power (RPD > 2.0). This study showed that FTIR-ATR together with PLS is a reliable method to determine the wood chemical composition in juvenile trees of Capirona and Bolaina.
ISSN:1932-6203
DOI:10.1371/journal.pone.0256559