Green Preparation and Properties of Epigallocatechin-3-gallate Loaded Debranched Banana Starch Nanoparticles

The effects of different temperature-time regimes of enzymatic retrogradation on the particle size, microscopic morphology, crystal structure, functional groups and epigallocatechin-3-gallate (EGCG)-loading capacity of debranched starch nanoparticles (DBS-NPs) prepared with green banana starch were...

Full description

Saved in:
Bibliographic Details
Published inShípĭn kēxué Vol. 44; no. 12; pp. 74 - 83
Main Author DUAN Zhiying, WANG Shenwan, AI Binling, ZHENG Lili, ZHENG Xiaoyan, YANG Yang, XIAO Dao, YANG Jinsong, SHENG Zhanwu
Format Magazine Article
LanguageEnglish
Published China Food Publishing Company 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effects of different temperature-time regimes of enzymatic retrogradation on the particle size, microscopic morphology, crystal structure, functional groups and epigallocatechin-3-gallate (EGCG)-loading capacity of debranched starch nanoparticles (DBS-NPs) prepared with green banana starch were investigated. Meanwhile, the stability, antioxidant properties and in vitro release behavior of EGCG@DBS-NPs were investigated. It was shown that compared with green banana starch, the particle size of DBS-NPs decreased from (23.4 ± 7.3) μm to (208.5 ± 2.7) nm, and the crystal structure changed from type C to C→B or C→A. Besides, the relative crystallinity and the hydrogen bonding force between molecular chains were enhanced. EGCG showed the highest loading capacity (4.34%) and encapsulation efficiency (86.89%) in DBS-NP50-12, and their combination exhibited synergistic antioxidant activity. EGCG@DBS-NP50-12 was found to be more stable in a near neutral environment than in an acidic environment, and significantly more stable than free EGCG during storage. EGCG@DBS-NP50-12 exhibited excellent slow release behavior in vitro, which was fitted to a first-order kinetic equation. This study provides a reference for the preparation and application of starch nanoparticles, which has potential value in the construction of starch-based bioactive carriers.
ISSN:1002-6630
DOI:10.7506/spkx1002-6630-20220921-210