On the unit group of a semisimple group algebra $\ bb{Z}_5

We give the characterization of the unit group of $\mathbb{F}_qSL(2, \mathbb{Z}_5)$, where $\mathbb{F}_q$ is a finite field with $q = p^k$ elements for prime $p > 5,$ and $SL(2, \mathbb{Z}_5)$ denotes the special linear group of $2 \times2$ matrices having determinant $1$ over the cyclic group $\...

Full description

Saved in:
Bibliographic Details
Published inMathematica bohemica Vol. 147; no. 1; pp. 1 - 10
Main Authors Rajendra K. Sharma, Gaurav Mittal
Format Journal Article
LanguageEnglish
Published Institute of Mathematics of the Czech Academy of Science 01.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We give the characterization of the unit group of $\mathbb{F}_qSL(2, \mathbb{Z}_5)$, where $\mathbb{F}_q$ is a finite field with $q = p^k$ elements for prime $p > 5,$ and $SL(2, \mathbb{Z}_5)$ denotes the special linear group of $2 \times2$ matrices having determinant $1$ over the cyclic group $\mathbb{Z}_5$.
ISSN:0862-7959
2464-7136
DOI:10.21136/MB.2021.0104-20