Connectivity modulations induced by reach grasp movements: a multidimensional approach

Abstract Reach&grasp requires highly coordinated activation of different brain areas. We investigated whether reach&grasp kinematics is associated to EEG-based networks changes. We enrolled 10 healthy subjects. We analyzed the reach&grasp kinematics of 15 reach&grasp movements perfor...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 1 - 11
Main Authors Pietro Caliandro, Gloria Menegaz, Chiara Iacovelli, Carmela Conte, Giuseppe Reale, Paolo Calabresi, Silvia F. Storti
Format Journal Article
LanguageEnglish
Published Nature Portfolio 01.11.2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Reach&grasp requires highly coordinated activation of different brain areas. We investigated whether reach&grasp kinematics is associated to EEG-based networks changes. We enrolled 10 healthy subjects. We analyzed the reach&grasp kinematics of 15 reach&grasp movements performed with each upper limb. Simultaneously, we obtained a 64-channel EEG, synchronized with the reach&grasp movement time points. We elaborated EEG signals with EEGLAB 12 in order to obtain event related synchronization/desynchronization (ERS/ERD) and lagged linear coherence between Brodmann areas. Finally, we evaluated network topology via sLORETA software, measuring network local and global efficiency (clustering and path length) and the overall balance (small-worldness). We observed a widespread ERD in α and β bands during reach&grasp, especially in the centro-parietal regions of the hemisphere contralateral to the movement. Regarding functional connectivity, we observed an α lagged linear coherence reduction among Brodmann areas contralateral to the arm involved in the reach&grasp movement. Interestingly, left arm movement determined widespread changes of α lagged linear coherence, specifically among right occipital regions, insular cortex and somatosensory cortex, while the right arm movement exerted a restricted contralateral sensory-motor cortex modulation. Finally, no change between rest and movement was found for clustering, path length and small-worldness. Through a synchronized acquisition, we explored the cortical correlates of the reach&grasp movement. Despite EEG perturbations, suggesting that the non-dominant reach&grasp network has a complex architecture probably linked to the necessity of a higher visual control, the pivotal topological measures of network local and global efficiency remained unaffected.
ISSN:2045-2322
DOI:10.1038/s41598-021-02458-x