PERUBAHAN KOMPOSISI VOLATIL DAGING BUAH MANGGA "KENSINGTON PRIDE" SELAMA PEMASAKAN [Changes in Volatile Compound Composition of Kensington Pride Mango Pulp During Fruit Ripening]
Volatile compounds of ‘Kesington Pride’ mango produced from the pulp during fruit ripening were studied using headspace solid-phase microextraction (SPME) as a sampling method and gas chromatography with a flame ionisation detector (GC-FID) and gas chromatography mass spectrophotometry (GC-MS) for a...
Saved in:
Published in | Jurnal Teknologi dan Industri Pangan (Edisi) Vol. 14; no. 2; pp. 154 - 163 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Bogor Agricultural University; Indonesian Food Technologist Association (IAFT)
01.08.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Volatile compounds of ‘Kesington Pride’ mango produced from the pulp during fruit ripening were studied using headspace solid-phase microextraction (SPME) as a sampling method and gas chromatography with a flame ionisation detector (GC-FID) and gas chromatography mass spectrophotometry (GC-MS) for analysis. Ethylene production and respiration reached a peak on the second and third day of ripening, respectively. Seventy-eight volatile compounds were identified from the pulp of ‘Kesington Pride’ mango; however, only 73 volatile compounds were present in notable amount. The most abundant group of volatile compounds was monoterpenes, accounting for abaout 44% of the total identified compounds, followed by sesquiterpenes (19%), aldehydes (11%),esters (10%) aromatics (8%), alcohol (2%), ketones (2%), alkanes (1%) and norisoprenoid (1%). -Terpinolene was the major compound during ripening. Except for -pinene, 3,7-dimethl-1,3,7-octatriene, 4-methl-1 (1-methylethylidene)-cyclohexene, p-mentha-1,5,8-triene, aloocimene, the concentration of all other monoterpenes increased for the first six or eight days and decreased afterwards. All sesquiteroenes, p-cymene, p-cymen-9-ol,2-ethyl-1,4-dimethl benzene also increased during ripening and peaked on day four, six or eight of ripening. Ketones, aldehydes alkane and cis-3-hexenol, on the other hand, decreased during ripening. Ethanol, esters and norisoprenoid increased quite sharply at the end of ripening period. |
---|---|
ISSN: | 1979-7788 2087-751X |