On the Functional Equation $\boldsymbol{U}_{\boldsymbol{t}}\boldsymbol{+} \boldsymbol{U}_{\boldsymbol{-t}} = \boldsymbol{V}_{\boldsymbol{t}} \boldsymbol{+} \boldsymbol{V}_{\boldsymbol{-t}}$ in a Banach Space
In this paper we consider commuting one-parameter groups, $\{U_{t} : t \in R\}$ and $\{V_{t} : t\in R\}$ of unitary operators and the functional equation $U_{t} + U_{-t} = V_{t} + V_{-t}$ on a reflexive strictly convex Banach space with Gateaux differentiable norm. 2000 Mathematics Subject Classif...
Saved in:
Published in | Sarajevo journal of mathematics Vol. 3; no. 2; pp. 241 - 248 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
12.06.2024
|
Online Access | Get full text |
ISSN | 1840-0655 2233-1964 |
DOI | 10.5644/SJM.03.2.10 |
Cover
Loading…
Summary: | In this paper we consider commuting one-parameter groups, $\{U_{t} : t \in R\}$ and $\{V_{t} : t\in R\}$ of unitary operators and the functional equation $U_{t} + U_{-t} = V_{t} + V_{-t}$ on a reflexive strictly convex Banach space with Gateaux differentiable norm.
2000 Mathematics Subject Classification. 47D03 |
---|---|
ISSN: | 1840-0655 2233-1964 |
DOI: | 10.5644/SJM.03.2.10 |