On the Functional Equation $\boldsymbol{U}_{\boldsymbol{t}}\boldsymbol{+} \boldsymbol{U}_{\boldsymbol{-t}} = \boldsymbol{V}_{\boldsymbol{t}} \boldsymbol{+} \boldsymbol{V}_{\boldsymbol{-t}}$ in a Banach Space

In this paper we consider commuting one-parameter groups, $\{U_{t} : t \in R\}$ and $\{V_{t} : t\in R\}$ of unitary operators and the functional equation $U_{t} + U_{-t} = V_{t} + V_{-t}$ on a reflexive strictly convex Banach space with Gateaux differentiable norm.   2000 Mathematics Subject Classif...

Full description

Saved in:
Bibliographic Details
Published inSarajevo journal of mathematics Vol. 3; no. 2; pp. 241 - 248
Main Author Pjanić, Karmelita
Format Journal Article
LanguageEnglish
Published 12.06.2024
Online AccessGet full text
ISSN1840-0655
2233-1964
DOI10.5644/SJM.03.2.10

Cover

Loading…
More Information
Summary:In this paper we consider commuting one-parameter groups, $\{U_{t} : t \in R\}$ and $\{V_{t} : t\in R\}$ of unitary operators and the functional equation $U_{t} + U_{-t} = V_{t} + V_{-t}$ on a reflexive strictly convex Banach space with Gateaux differentiable norm.   2000 Mathematics Subject Classification. 47D03
ISSN:1840-0655
2233-1964
DOI:10.5644/SJM.03.2.10