Abstract LB001: Encapsulation of IL-12 with an ultra pH-sensitive nanoparticle platform improves tolerability and promotes antitumor response in mice

Abstract Background: Interleukin-12 is a potent proinflammatory cytokine that proliferates and activates T cells, NK cells and differentiates Th1 cells. Translation of IL-12 for cancer treatment has been hindered by lethal toxicities due to cytokine release syndrome and there are currently no approv...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 83; no. 8_Supplement; p. LB001
Main Authors Su, Qingtai, Gutowski, Stephen, Kalashnikova, Irina, Burcham, Austin, Allu, Bhargavi, Chen, Zirong, Sun, Zhichen, Gao, Jinming, Han, Ruolan, Miller, Jason B., Zhao, Tian
Format Journal Article
LanguageEnglish
Published 14.04.2023
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Background: Interleukin-12 is a potent proinflammatory cytokine that proliferates and activates T cells, NK cells and differentiates Th1 cells. Translation of IL-12 for cancer treatment has been hindered by lethal toxicities due to cytokine release syndrome and there are currently no approved IL-12 therapies. To minimize the severe toxicities while maintaining potency, we have developed ON-BOARD, an ultra-pH sensitive nanoparticle platform for masked and targeted delivery of payloads to the acidic tumor microenvironment. The clinical feasibility of ON-BOARD has been demonstrated by high tumor specificity of pegsitacianine in multiple tumor types from the Phase I and II clinical trials. Herein we report encapsulation and masked delivery of IL-12 to tumor-bearing mice using ON-BOARD, demonstrating significantly improved tolerability, anti-tumor efficacy, and potential for clinical translation. Methods: A mouse IL-12 fused with Fc was formulated in ON-BOARD nanoparticles. Particle properties were characterized and lead formulations were identified by in vitro screening to determine pH-mediated bioactivity in reporter and ELISA assays and stability in mouse plasma. In vivo studies were performed to compare the activity of unencapsulated IL-12 to ON-BOARD/IL-12 formulations. PD response was evaluated by measuring systemic cytokine levels in plasma, while clinical chemistry was performed to evaluate liver and kidney functions. Anti-tumor efficacy of ON-BOARD/IL-12 formulations was performed in mice bearing syngeneic MC38 colorectal cancer tumors compared to unencapsulated IL-12. Results: ON-BOARD/IL-12 formulations showed high encapsulation efficiency (>85%) and drug loading up to 20% wt. in uniformly distributed stable particles (Dh<50nm). pH-specific payload release was confirmed in vitro with >100-fold activation window between the acid-activated and intact formulations. Following incubation in mouse plasma the lead ON-BOARD formulations showed stable IL-12 encapsulation by an ELISA assay. In vivo, ON-BOARD/IL-12 formulations demonstrated significantly improved tolerability compared to unencapsulated IL-12. When dosed at 5µg/dose compared to unencapsulated protein at 1 µg/dose, ON-BOARD/IL-12 demonstrated reduced body weight loss (<2% vs 13%) and decreased liver injury markers AST and ALT. Analysis of systemic cytokines (IFNγ, IL-6, IL-10, TNFα, etc) showed significantly lower levels for ON-BOARD formulations including >1,000-fold reduction in plasma IFNγ level which is known to be directly induced by IL-12 signaling. ON-BOARD/IL-12 formulations also demonstrated strong anti-tumor efficacy in MC38 tumor-bearing animals with >95% TGI and complete responders. Conclusions: The ON-BOARD platform demonstrated potential for masking toxicity and facilitating tumor-specific delivery of IL-12 proteins for cancer therapy. Citation Format: Qingtai Su, Stephen Gutowski, Irina Kalashnikova, Austin Burcham, Bhargavi Allu, Zirong Chen, Zhichen Sun, Jinming Gao, Ruolan Han, Jason B. Miller, Tian Zhao. Encapsulation of IL-12 with an ultra pH-sensitive nanoparticle platform improves tolerability and promotes antitumor response in mice [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 2 (Clinical Trials and Late-Breaking Research); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(8_Suppl):Abstract nr LB001.
ISSN:1538-7445
1538-7445
DOI:10.1158/1538-7445.AM2023-LB001