Synthesis of colloidal MnAs x Sb 1− x nanoparticles: compositional inhomogeneity and magnetic consequences

The ternary manganese pnictide phases, MnAs 1− x Sb x , are of interest for magnetic refrigeration and waste heat recovery due to their magnetocaloric properties, maximized at the Curie temperature ( T C ), which varies from 580–240 K, depending on composition. Nanoparticles potentially enable appli...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 9; no. 38; pp. 13292 - 13303
Main Authors Hettiarachchi, Malsha A., Su’a, Tepora, Abdelhamid, Ehab, Pokhrel, Shiva, Nadgorny, Boris, Brock, Stephanie L.
Format Journal Article
LanguageEnglish
Published 07.10.2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ternary manganese pnictide phases, MnAs 1− x Sb x , are of interest for magnetic refrigeration and waste heat recovery due to their magnetocaloric properties, maximized at the Curie temperature ( T C ), which varies from 580–240 K, depending on composition. Nanoparticles potentially enable application in microelectronics (cooling) or graded composites that can operate over a wide temperature range, but manganese pnictides are synthetically challenging to realize as discrete nanoparticles and their fundamental magnetic properties have not been extensively studied. Accordingly, colloidal synthesis methods were employed to target discrete MnAs x Sb 1− x nanoparticles ( x = 0.1–0.9) by arrested precipitation reactions of Mn 2 (CO) 10 with (C 6 H 5 ) 3 AsO and (C 6 H 5 ) 3 Sb in coordinating solvents. The MnAs x Sb 1− x particles are spherical in morphology with average diameters 10–13 nm (standard deviations <20% based on transmission electron microscopy analysis). X-Ray fluorescence spectroscopy measurements on ensembles showed that all phases had an excess of Sb relative to the targeted composition, whereas energy dispersive spectroscopic mapping data of single particles revealed that the nanoparticles are inhomogeneous, adopting a core–shell structure, with the amorphous shell rich in Mn and O (and sometimes Sb) while the crystalline core is rich in Mn, As, and Sb. Magnetization measurements of the nanoparticle ensemble demonstrated the presence of both ferromagnetic and paramagnetic phases. By combining the magnetization measurements with precision chemical mapping and simple modeling, we were able to unambiguously attribute ferromagnetism to the MnAs x Sb 1− x crystalline core, whereas paramagnetism was attributed to the amorphous shell. Magnetization measurements at variable temperatures were used to determine the superparamagnetic transition of the nanoparticles, although for some compositions and particle sizes the blocking temperature exceeded room temperature. Preliminary magnetic studies also revealed a conventional dependence between core size and coercivity, in spite of variable compositions of the nanoparticles, an unexpected result.
ISSN:2050-7526
2050-7534
DOI:10.1039/D1TC02479E