Synthesis of Fe 2 O 3 /ZnFe 2 O 4 /g‐C 3 N 4 @ZIF‐8 composites: Enhancing thermal stability and flame retardancy in polyurea

Abstract Metal–organic frameworks (MOFs) have garnered significant attention in recent years due to their potential application in flame‐retardant polymeric materials. In this work, Fe 2 O 3 /ZnFe 2 O 4 /g‐C 3 N 4 @ZIF‐8 flame retardants were synthesized via solvothermal and calcination techniques,...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied polymer science
Main Authors Lin, Jiayu, Hou, Yongbo, Ding, Lailong, Wang, Yifan, Hu, Jinhu, Qiu, Xishun, Wu, Chao, Ma, Mingliang, Gao, Wei
Format Journal Article
LanguageEnglish
Published 13.09.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Metal–organic frameworks (MOFs) have garnered significant attention in recent years due to their potential application in flame‐retardant polymeric materials. In this work, Fe 2 O 3 /ZnFe 2 O 4 /g‐C 3 N 4 @ZIF‐8 flame retardants were synthesized via solvothermal and calcination techniques, and their elemental composition and morphologies were thoroughly characterized. The flame retardancy of polyurea (PUA) composites incorporating varying dosages of these flame retardants was evaluated using cone calorimetry tests (CCT). The findings demonstrate that the incorporation of Fe 2 O 3 /ZnFe 2 O 4 /g‐C 3 N 4 @ZIF‐8 significantly enhanced the flame retardant properties of PUA composites. With the addition of 3 wt% of the flame retardant, the peak heat release rate (PHRR), total heat release (THR), total smoke production (TSP), and total CO yield (TCO) of the PUA composites decreased to 890.82 kW/m 2 , 131.34 MJ/m 2 , 12.30 m 2 , and 2.39 g, respectively, reflecting reductions of 33.59%, 18.59%, 29.40%, and 47.93% compared with pure PUA. The flame‐retardant mechanism was systematically analyzed in both the condensed and gas phases. This study provides a robust experimental foundation and novel insights that contribute to the development of advanced flame‐retardant coating materials.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.56261