Numerical analysis of cavitation cloud shedding in a submerged water jet

Focused on the unsteady behavior of high-speed water jets with intensive cavitation a numerical analysis is performed by applying a practical compressible mixture flow bubble cavitation model with a simplified estimation of bubble radius. The mean flow of two-phase mixture is calculated by unsteady...

Full description

Saved in:
Bibliographic Details
Published in水动力学研究与进展:英文版 no. 6; pp. 986 - 993
Main Author Guoyi PENG 杨从新 Yasuyuki OGUMA Seiji SHIMIZU
Format Journal Article
LanguageEnglish
Published 2016
Online AccessGet full text

Cover

Loading…
More Information
Summary:Focused on the unsteady behavior of high-speed water jets with intensive cavitation a numerical analysis is performed by applying a practical compressible mixture flow bubble cavitation model with a simplified estimation of bubble radius. The mean flow of two-phase mixture is calculated by unsteady Reynolds averaged Navier-Stokes(URANS) for compressible flow and the intensity of cavitation in a local field is evaluated by the volume fraction of gas bubbles whose radius is estimated with a simplified RayleighPlesset equation according to pressure variation of the mean flow field. High-speed submerged water jet issuing from a sheathed sharp-edge orifice nozzle is treated. The periodically shedding of cavitation clouds is captured in a certain reliability compared to experiment data of visualization observation and the capability to capture the unsteadily shedding of cavitation clouds is demonstrated. The results demonstrate that cavitation takes place near the entrance of nozzle throat and cavitation cloud expands consequentially while flowing downstream. Developed bubble clouds break up near the nozzle exit and shed downstream periodically along the shear layer. Under the effect of cavitation bubbles the decay of core velocity is delayed compared to the case of no-cavitation jet.
Bibliography:31-1563/T
Guoyi PENG;Congxin YANG;Yasuyuki OGUMA;Seiji SHIMIZU;Department of Mechanical Engineering, College of Engineering, Nihon University;School of Energy and Power Engineering, Lanzhou University of Technology
ISSN:1001-6058