Efficient and selective recovery of Ni, Cu, and Co from low-nickel matte via a hydrometallurgical process

Low-nickel matte was intensively characterized, and Ni, Cu, and Co were determined to exist mainly as (Fe,Ni)9S8 and FeNi3, Cu5FeS4, and (Fe,Ni)9S8 and Fe3O4 (in isomorphic form), respectively. The efficient and selective extraction of Ni, Cu, and Co from the low-nickel matte in an (NH4)2S2O8/NH3·H2...

Full description

Saved in:
Bibliographic Details
Published in矿物冶金与材料学报:英文版 Vol. 24; no. 3; pp. 249 - 256
Main Author Guang-ju Chen;Jian-ming Gao;Mei Zhang;Min Guo
Format Journal Article
LanguageEnglish
Published 2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Low-nickel matte was intensively characterized, and Ni, Cu, and Co were determined to exist mainly as (Fe,Ni)9S8 and FeNi3, Cu5FeS4, and (Fe,Ni)9S8 and Fe3O4 (in isomorphic form), respectively. The efficient and selective extraction of Ni, Cu, and Co from the low-nickel matte in an (NH4)2S2O8/NH3·H2O solution system was studied. The effects of (NH4)2S2O8 and NH3·H2O concentrations, leaching time, and leaching temperature on the metal extraction efficiency were systematically investigated. During the oxidative ammonia leaching process, the metal extraction efficiencies of Ni 81.07%, Cu 93.81%, and Co 71.74% were obtained under the optimal conditions. The relatively low leaching efficiency of Ni was mainly ascribed to NiFe alloy deactivation in ammonia solution. By introducing an acid pre-leaching process into the oxidative ammonia leaching process, we achieved the high extraction efficiencies of 98.03%, 99.13%, and 85.60% for the valuable metals Ni, Cu, and Co, respectively, from the low-nickel matte.
Bibliography:11-5787/TF
ISSN:1674-4799
1869-103X