Preparation and Characterization of an Intelligent Multitarget Tracking HA-RGD-CLB-QDs Drug Delivery System
This work aimed to develop an intelligent multi-target tracking hyaluronic acid-RGDchlorambucil-quantum dots(HA-RGD-CLB-QDs) drug delivery system. After deacetylated, hyaluronic acid was reacted with anticancer drug chlorambucil, RGD, and quantum dots to obtain the HA-RGD-CLB-QDs drug delivery syste...
Saved in:
Published in | 武汉理工大学学报:材料科学英文版 Vol. 32; no. 6; pp. 1493 - 1502 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2017
|
Online Access | Get full text |
Cover
Loading…
Summary: | This work aimed to develop an intelligent multi-target tracking hyaluronic acid-RGDchlorambucil-quantum dots(HA-RGD-CLB-QDs) drug delivery system. After deacetylated, hyaluronic acid was reacted with anticancer drug chlorambucil, RGD, and quantum dots to obtain the HA-RGD-CLB-QDs drug delivery system. The characterization by FT-IR, ~1 H NMR, TEM, XPS, DLS, and UV-vis absorption and fluorescence spectra show that the system is successfully constructed with an average particle size of about 70 nm. The results of the drug release profile show that that the system has a p H and enzyme sensitive controlled release behaviour. Moreover, cellular uptake and toxicity results show that the system has an ideal dual receptormediated endocytosis pathway that significantly enhances the efficacy of CLB tumor therapy and has a lower toxicity to normal cells.The system shows the potential application as a carrier for cancer therapy. |
---|---|
Bibliography: | 42-1680/TB drug delivery system; hyaluronic acid; quantum dots; RGD; dual-receptor This work aimed to develop an intelligent multi-target tracking hyaluronic acid-RGDchlorambucil-quantum dots(HA-RGD-CLB-QDs) drug delivery system. After deacetylated, hyaluronic acid was reacted with anticancer drug chlorambucil, RGD, and quantum dots to obtain the HA-RGD-CLB-QDs drug delivery system. The characterization by FT-IR, ~1 H NMR, TEM, XPS, DLS, and UV-vis absorption and fluorescence spectra show that the system is successfully constructed with an average particle size of about 70 nm. The results of the drug release profile show that that the system has a p H and enzyme sensitive controlled release behaviour. Moreover, cellular uptake and toxicity results show that the system has an ideal dual receptormediated endocytosis pathway that significantly enhances the efficacy of CLB tumor therapy and has a lower toxicity to normal cells.The system shows the potential application as a carrier for cancer therapy. |
ISSN: | 1000-2413 1993-0437 |