Effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La1-xPrxFe11.4Si1.6Hy hydrides
In this paper, we study the effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La(1-x)PrxFe11.4Si1.6Hy hydrides. The powder x-ray diffraction patterns of the La1-xPrxFe11.4Si1.6 and its hydrides show that each of the alloys is crystallized into the single phase...
Saved in:
Published in | 中国物理B:英文版 Vol. 26; no. 6; pp. 384 - 388 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2017
|
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
Cover
Summary: | In this paper, we study the effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La(1-x)PrxFe11.4Si1.6Hy hydrides. The powder x-ray diffraction patterns of the La1-xPrxFe11.4Si1.6 and its hydrides show that each of the alloys is crystallized into the single phase of cubic Na Zn13-type structure. There are hydrogen-absorbing plateaus under 0.4938 MPa and 0.4882 MPa in the absorbing curves for the La0.8Pr0.2Fe11.4Si1.6 and La0.6Pr0.4Fe11.4Si1.6 compounds. The releasing processes lag behind the absorbing process, which is obviously different from the coincidence between absorbing and releasing curves of the La Fe11.4Si1.6 compound. The remnant hydrogen content for La0.6Pr0.4Fe11.4Si1.6 is significantly more than that for La0.8Pr0.2Fe11.4Si1.6 after hydrogen desorption, indicating that more substitutions of Pr for La are beneficial to retaining more hydrogen atoms in the alloys. The values of maximum magnetic entropy change are 14.91 J/kg·K and 17.995 J/kg·K for La0.8Pr0.2Fe11.4Si1.6H0.13 and La0.6Pr0.4Fe11.4Si1.6H0.87,respectively. |
---|---|
Bibliography: | Lei Xu1,2, Jin-Liang Zhao2, Jing-Jie Yang2, Hong-Guo Zhang1, Dan-Min Liu3, Ming Yue1 and Yi-Jian Jang4 ( 1 College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China ;2College of Applied Sciences, Beijing University of Technology, Beijing 100124, China ;3 Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China ;4Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China) 11-5639/O4 In this paper, we study the effects of Pr substitution on the hydrogenating process and magnetocaloric properties of La(1-x)PrxFe11.4Si1.6Hy hydrides. The powder x-ray diffraction patterns of the La1-xPrxFe11.4Si1.6 and its hydrides show that each of the alloys is crystallized into the single phase of cubic Na Zn13-type structure. There are hydrogen-absorbing plateaus under 0.4938 MPa and 0.4882 MPa in the absorbing curves for the La0.8Pr0.2Fe11.4Si1.6 and La0.6Pr0.4Fe11.4Si1.6 compounds. The releasing processes lag behind the absorbing process, which is obviously different from the coincidence between absorbing and releasing curves of the La Fe11.4Si1.6 compound. The remnant hydrogen content for La0.6Pr0.4Fe11.4Si1.6 is significantly more than that for La0.8Pr0.2Fe11.4Si1.6 after hydrogen desorption, indicating that more substitutions of Pr for La are beneficial to retaining more hydrogen atoms in the alloys. The values of maximum magnetic entropy change are 14.91 J/kg·K and 17.995 J/kg·K for La0.8Pr0.2Fe11.4Si1.6H0.13 and La0.6Pr0.4Fe11.4Si1.6H0.87,respectively. La(Fe,Si)13 compounds, hydrogenating process, magnetocaloric effect, magnetic refrigeration materials |
ISSN: | 1674-1056 2058-3834 |