Surface Treatment and Biomimetic Mineralization of Porous Microspheres Fabricated by Calcium Gluconate-g-Poly(D,L-lactide)

Porous hybrid microspheres were fabricated by the synthesized calcium gluconate-g-poly(D,L-lactide) (CG-g- PDLLA) composites. These hybrid microspheres were treated with an alkaline solution for different period of time to control the amount of generated carboxylate groups and remained CG on the sur...

Full description

Saved in:
Bibliographic Details
Published in高分子科学:英文版 Vol. 35; no. 7; pp. 837 - 845
Main Author Le-yuan Song Ni Jiang Zhi-hua Gan
Format Journal Article
LanguageEnglish
Published 2017
Online AccessGet full text

Cover

Loading…
More Information
Summary:Porous hybrid microspheres were fabricated by the synthesized calcium gluconate-g-poly(D,L-lactide) (CG-g- PDLLA) composites. These hybrid microspheres were treated with an alkaline solution for different period of time to control the amount of generated carboxylate groups and remained CG on the surface. The microspheres were then incubated in a supersaturated simulated body fluid (1.5 SBF) solution for different time to investigate their biomimetic mineralization behavior. The depositions were found to have a fine cluster morphology, a similar crystal structure and chemical structure to natural hydroxyapatite, and a medium Ca/P of approximately 1.30. The effect of surface treating time on the structure and mineralization behavior of these microspheres has been discussed in detail. The results indicate that the nucleation and growth of apatite on the surface are influenced by the induced carboxylate groups and the remained CG. The hybrid CG-g- PDLLA microspheres have the potential as a novel alternative in bone tissue engineering.
Bibliography:Porous hybrid microspheres were fabricated by the synthesized calcium gluconate-g-poly(D,L-lactide) (CG-g- PDLLA) composites. These hybrid microspheres were treated with an alkaline solution for different period of time to control the amount of generated carboxylate groups and remained CG on the surface. The microspheres were then incubated in a supersaturated simulated body fluid (1.5 SBF) solution for different time to investigate their biomimetic mineralization behavior. The depositions were found to have a fine cluster morphology, a similar crystal structure and chemical structure to natural hydroxyapatite, and a medium Ca/P of approximately 1.30. The effect of surface treating time on the structure and mineralization behavior of these microspheres has been discussed in detail. The results indicate that the nucleation and growth of apatite on the surface are influenced by the induced carboxylate groups and the remained CG. The hybrid CG-g- PDLLA microspheres have the potential as a novel alternative in bone tissue engineering.
Calcium gluconate; Poly(D,L-lactide); Mineralization; Hydroxyapatite; Porous microspheres
11-2015/O6
ISSN:0256-7679
1439-6203