What are the evolutionary origins of stomatal responses to abscisic acid in land plants?FA

The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of this response recur in the literature. A single-step model for stomatal control sugg...

Full description

Saved in:
Bibliographic Details
Published in植物学报:英文版 Vol. 59; no. 4; pp. 240 - 260
Main Author Frances C. Sussmilch Timothy J. Brodribb Scott A. M. McAdam
Format Journal Article
LanguageEnglish
Published 2017
Subjects
Online AccessGet full text
ISSN1672-9072
1744-7909

Cover

More Information
Summary:The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of this response recur in the literature. A single-step model for stomatal control suggests that stomata evolved active, ABA- mediated control of stomatal aperture, when these structures first appeared, prior bryophyte and vascular plant gradualistic model for stomatal to the divergence of neages. In contrast, a control proposes that the most basal vascular plant stomata responded passively to changes in leaf water status. This model suggests that active ABA-driven mechanisms for stomatal responses to water status instead evolved after the divergence of seed plants, culminating in the complex, ABA-mediated responses observed in modern angiosperms. Here we review the findings that form the basis for these two models, including recent work that provides critical molecular insights into resolving this intriguing debate, and find strong evidence to support a gradualistic model for stomatal evolution.
Bibliography:11-5067/Q
The evolution of active stomatal closure in response to leaf water deficit, mediated by the hormone abscisic acid (ABA), has been the subject of recent debate. Two different models for the timing of the evolution of this response recur in the literature. A single-step model for stomatal control suggests that stomata evolved active, ABA- mediated control of stomatal aperture, when these structures first appeared, prior bryophyte and vascular plant gradualistic model for stomatal to the divergence of neages. In contrast, a control proposes that the most basal vascular plant stomata responded passively to changes in leaf water status. This model suggests that active ABA-driven mechanisms for stomatal responses to water status instead evolved after the divergence of seed plants, culminating in the complex, ABA-mediated responses observed in modern angiosperms. Here we review the findings that form the basis for these two models, including recent work that provides critical molecular insights into resolving this intriguing debate, and find strong evidence to support a gradualistic model for stomatal evolution.
ISSN:1672-9072
1744-7909