Effect of ultrasonic power introduced by a mold copper plate on the solidification process

An electroslag furnace with ultrasonic vibration introduced by a mold copper plate was designed. The effects of ultrasonic power on the element distribution and compactness in electroslag remelting (ESR) ingots were studied, and the mechanism of ultrasonic assistance was analyzed in cold experiments...

Full description

Saved in:
Bibliographic Details
Published in矿物冶金与材料学报:英文版 Vol. 24; no. 2; pp. 139 - 146
Main Author Xiao-fang Shi Li-zhong Chang Jian-jun Wang
Format Journal Article
LanguageEnglish
Published 2017
Online AccessGet full text

Cover

Loading…
More Information
Summary:An electroslag furnace with ultrasonic vibration introduced by a mold copper plate was designed. The effects of ultrasonic power on the element distribution and compactness in electroslag remelting (ESR) ingots were studied, and the mechanism of ultrasonic assistance was analyzed in cold experiments. In the results, silicon, manganese and chromium are uniformly distributed at an ultrasonic power of 300-750 W. The absence of ultrasonic or higher ultrasonic power is not conducive to the uniformity of alloying elements. Carbon demon- strates a highly uneven distribution at 300 W, gradually reaches the uniform distribution as the ultrasonic power further increases, and shows the poor distribution at 1000 W. The compactness of ESR ingots gradually increases with increasing ultrasonic power and reaches the uni- form distribution at 500 W. A further increase in ultrasonic power does not improve the compactness. Introducing ultrasonic vibrations by a mold copper plate can improve the solidification quality; however, an appropriate ultrasonic power level should be determined.
Bibliography:11-5787/TF
An electroslag furnace with ultrasonic vibration introduced by a mold copper plate was designed. The effects of ultrasonic power on the element distribution and compactness in electroslag remelting (ESR) ingots were studied, and the mechanism of ultrasonic assistance was analyzed in cold experiments. In the results, silicon, manganese and chromium are uniformly distributed at an ultrasonic power of 300-750 W. The absence of ultrasonic or higher ultrasonic power is not conducive to the uniformity of alloying elements. Carbon demon- strates a highly uneven distribution at 300 W, gradually reaches the uniform distribution as the ultrasonic power further increases, and shows the poor distribution at 1000 W. The compactness of ESR ingots gradually increases with increasing ultrasonic power and reaches the uni- form distribution at 500 W. A further increase in ultrasonic power does not improve the compactness. Introducing ultrasonic vibrations by a mold copper plate can improve the solidification quality; however, an appropriate ultrasonic power level should be determined.
electroslag remelting; mold; ultrasonic; solidification
ISSN:1674-4799
1869-103X