Quantum dots protect against MPP+-induced neurotoxicity in a cell model of Parkinson's disease through autophagy induction
Autophagy is a basic cellular process that decomposes damaged organelles and aberrant proteins. Dysregulation of autophagy is implicated in pathogenesis of neurodegenerative disorders, including Parkinson's disease(PD). Pharmacological compounds that stimulate autophagy can provide neuroprotection i...
Saved in:
Published in | 中国科学:化学英文版 no. 11; pp. 1486 - 1491 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2016
|
Online Access | Get full text |
Cover
Loading…
Summary: | Autophagy is a basic cellular process that decomposes damaged organelles and aberrant proteins. Dysregulation of autophagy is implicated in pathogenesis of neurodegenerative disorders, including Parkinson's disease(PD). Pharmacological compounds that stimulate autophagy can provide neuroprotection in models of PD. Nanoparticles have emerged as regulators of autophagy and have been tested in adjuvant therapy for diseases. In this present study, we explore the effects of quantum dots(QDs) that can induce autophagy in a cellular model of Parkinson's disease. Cd Te/Cd S/Zn S QDs protect differentiated rat pheochromocytoma PC12 cells from MPP+-induced cell damage, including reduced viability, apoptosis and accumulation of α-Synuclein, a characteristic protein of PD. The protective function of QDs is autophagy-dependent. In addition, we investigate the interaction between quantum dots and autophagic pathways and identify beclin1 as an essential factor for QDs-induced autophagy. Our results reveal new promise of QDs in the theranostic of neurodegenerative diseases. |
---|---|
Bibliography: | quantum dots autophagy Parkinson's disease α-Synuclein Beclin1 Autophagy is a basic cellular process that decomposes damaged organelles and aberrant proteins. Dysregulation of autophagy is implicated in pathogenesis of neurodegenerative disorders, including Parkinson's disease(PD). Pharmacological compounds that stimulate autophagy can provide neuroprotection in models of PD. Nanoparticles have emerged as regulators of autophagy and have been tested in adjuvant therapy for diseases. In this present study, we explore the effects of quantum dots(QDs) that can induce autophagy in a cellular model of Parkinson's disease. Cd Te/Cd S/Zn S QDs protect differentiated rat pheochromocytoma PC12 cells from MPP+-induced cell damage, including reduced viability, apoptosis and accumulation of α-Synuclein, a characteristic protein of PD. The protective function of QDs is autophagy-dependent. In addition, we investigate the interaction between quantum dots and autophagic pathways and identify beclin1 as an essential factor for QDs-induced autophagy. Our results reveal new promise of QDs in the theranostic of neurodegenerative diseases. 11-5839/O6 |
ISSN: | 1674-7291 1869-1870 |