bmo ρ(ω) Spaces and Riesz SchrSdinger transforms associated to operators
We introduce the BMO-type space bmo ρ(w) and establish the duality between h^1ρ(ω) and bmo ρ(ω),where ω∈A1^ρ∞(R^n) and ω's locally behave as Muckenhoupt's weights but actually include them. We also give the Fefferman-Stein type decomposition of bmop(ω) with respect to Riesz transforms associated to...
Saved in:
Published in | 中国科学:数学英文版 no. 10; pp. 1995 - 2018 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We introduce the BMO-type space bmo ρ(w) and establish the duality between h^1ρ(ω) and bmo ρ(ω),where ω∈A1^ρ∞(R^n) and ω's locally behave as Muckenhoupt's weights but actually include them. We also give the Fefferman-Stein type decomposition of bmop(ω) with respect to Riesz transforms associated to Schrodinger operator L,where L=-△+V is a SchrSdinger operator on R^2 (n≥3) and V is a non-negative function satisfying the reverse HSlder inequality. |
---|---|
Bibliography: | bmo ρ(ω) spaces, Riesz transforms, Schrodinger operator 11-5837/O1 We introduce the BMO-type space bmo ρ(w) and establish the duality between h^1ρ(ω) and bmo ρ(ω),where ω∈A1^ρ∞(R^n) and ω's locally behave as Muckenhoupt's weights but actually include them. We also give the Fefferman-Stein type decomposition of bmop(ω) with respect to Riesz transforms associated to Schrodinger operator L,where L=-△+V is a SchrSdinger operator on R^2 (n≥3) and V is a non-negative function satisfying the reverse HSlder inequality. |
ISSN: | 1674-7283 1869-1862 |