Generation of 15 W femtosecond laser pulse from a Kerr-lens mode-locked Yb:YAG thin-disk oscillator
We demonstrated a robust power-scalable Kerr-lens mode-locked(KLM) operation based on a Yb:YAG thin-disk oscillator.15-W,272-fs pulses were realized at a repetition rate of 86.7 MHz with an additional Kerr medium and a 2.5 mm hard aperture in the cavity.247-fs pulses with an average power of 11 W co...
Saved in:
Published in | 中国物理B:英文版 no. 9; pp. 359 - 363 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We demonstrated a robust power-scalable Kerr-lens mode-locked(KLM) operation based on a Yb:YAG thin-disk oscillator.15-W,272-fs pulses were realized at a repetition rate of 86.7 MHz with an additional Kerr medium and a 2.5 mm hard aperture in the cavity.247-fs pulses with an average power of 11 W could also be obtained by using a 2.4 mm hard aperture.Based on this shorter pulse,high efficient second-harmonic generation(SHG) was performed with a 1.7-mm-long Li B3O5(LBO) crystal.The SHG laser power was up to 5 W with the power fluctuation RMS of 1% measured over one hour. |
---|---|
Bibliography: | We demonstrated a robust power-scalable Kerr-lens mode-locked(KLM) operation based on a Yb:YAG thin-disk oscillator.15-W,272-fs pulses were realized at a repetition rate of 86.7 MHz with an additional Kerr medium and a 2.5 mm hard aperture in the cavity.247-fs pulses with an average power of 11 W could also be obtained by using a 2.4 mm hard aperture.Based on this shorter pulse,high efficient second-harmonic generation(SHG) was performed with a 1.7-mm-long Li B3O5(LBO) crystal.The SHG laser power was up to 5 W with the power fluctuation RMS of 1% measured over one hour. 11-5639/O4 Yingnan Peng, Jinwei Zhang, Zhaohua Wang, Jiangfeng Zhu, Dehua Li, and Zhiyi Wei( 1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China) thin disk Kerr-lens mode-locking high power second harmonic generation |
ISSN: | 1674-1056 2058-3834 |