Metal-free porous nitrogen-doped carbon nanotubes for enhanced oxygen reduction and evolution reactions

Developing efficient metal-free bi-functional electrocatalysts is required to reduce costs and improve the slow oxygen reduction reaction (ORR) and oxygen evo- lution reaction (OER) kinetics in electrochemical systems. Porous N-doped carbon nanotubes (NCNTs) were fabri- cated by KOH activation and p...

Full description

Saved in:
Bibliographic Details
Published in中国科学通报:英文版 no. 11; pp. 889 - 896
Main Author Ting Pan Hongying Liu Guangyuan Ren Yunan Li Xianyong Lu Ying Zhu
Format Journal Article
LanguageEnglish
Published 2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Developing efficient metal-free bi-functional electrocatalysts is required to reduce costs and improve the slow oxygen reduction reaction (ORR) and oxygen evo- lution reaction (OER) kinetics in electrochemical systems. Porous N-doped carbon nanotubes (NCNTs) were fabri- cated by KOH activation and pyrolysis of polypyrrole nanotubes. The NCNTs possessed a large surface area of more than 1,000 m2 g-1. NCNT electrocatalysts, particu- larly those annealed at 900 ℃, exhibited excellent ORR electrocatalytic performance. Specifically, they yielded a more positive onset potential, higher current density, and long-term operation stability in alkaline media, when compared with a commercially available 20 wt% Pt/C catalyst. This resulted from the synergetic effect between the dominant pyridinic/graphitic-N species and the porous tube structures. The NCNT electrocatalyst also exhibited good performance for the OER. The metal-free porous nitrogen-doped carbon nanomaterials were prepared from low cost and environmentally friendly precursors. They are potential alternatives to Pt/C catalysts, for electrochemical energy conversion and storage.
Bibliography:Developing efficient metal-free bi-functional electrocatalysts is required to reduce costs and improve the slow oxygen reduction reaction (ORR) and oxygen evo- lution reaction (OER) kinetics in electrochemical systems. Porous N-doped carbon nanotubes (NCNTs) were fabri- cated by KOH activation and pyrolysis of polypyrrole nanotubes. The NCNTs possessed a large surface area of more than 1,000 m2 g-1. NCNT electrocatalysts, particu- larly those annealed at 900 ℃, exhibited excellent ORR electrocatalytic performance. Specifically, they yielded a more positive onset potential, higher current density, and long-term operation stability in alkaline media, when compared with a commercially available 20 wt% Pt/C catalyst. This resulted from the synergetic effect between the dominant pyridinic/graphitic-N species and the porous tube structures. The NCNT electrocatalyst also exhibited good performance for the OER. The metal-free porous nitrogen-doped carbon nanomaterials were prepared from low cost and environmentally friendly precursors. They are potential alternatives to Pt/C catalysts, for electrochemical energy conversion and storage.
N-doped porous carbon ; Polypyrrole ;Electrocatalyst ; Oxygen reduction reaction; Oxygenevolution reaction
ISSN:1001-6538
1861-9541