Growth characteristics of spherical titanium oxide nanoparticles during the rapid gaseous detonation reaction
The nanosize grain growth characteristics of spherical single-crystal titanium oxide (TiO2) during the rapid gaseous detonation reaction are discussed. Based on the experimental conditions and the Chapman-Jouguet theory, the Kruis model was introduced to simulate the growth characteristics of spheri...
Saved in:
Published in | 中国颗粒学报:英文版 no. 3; pp. 102 - 107 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The nanosize grain growth characteristics of spherical single-crystal titanium oxide (TiO2) during the rapid gaseous detonation reaction are discussed. Based on the experimental conditions and the Chapman-Jouguet theory, the Kruis model was introduced to simulate the growth characteristics of spherical TiO2 nanoparticles obtained under high pressure, high temperature and by rapid reaction. The results show that the numerical analysis can satisfactorily predict the growth characteristics of spherical TiO2 nanoparticles with diameters of 15-300 nm at different affecting factors, such as concentration of particles, reaction temperature and time, which are in agreement with the obtained experimental results. We found that the increase of the gas-phase reaction temperature, time, and particle concentration affects the growth tendency of spherical nanocrystal TiO2, which provides effective theoretical support for the controllable synthesis of multi-scale nanoparticles. |
---|---|
Bibliography: | Gaseous phase detonation chemistry Chapman-Jouguet theoryKruis model Particle growth characterization The nanosize grain growth characteristics of spherical single-crystal titanium oxide (TiO2) during the rapid gaseous detonation reaction are discussed. Based on the experimental conditions and the Chapman-Jouguet theory, the Kruis model was introduced to simulate the growth characteristics of spherical TiO2 nanoparticles obtained under high pressure, high temperature and by rapid reaction. The results show that the numerical analysis can satisfactorily predict the growth characteristics of spherical TiO2 nanoparticles with diameters of 15-300 nm at different affecting factors, such as concentration of particles, reaction temperature and time, which are in agreement with the obtained experimental results. We found that the increase of the gas-phase reaction temperature, time, and particle concentration affects the growth tendency of spherical nanocrystal TiO2, which provides effective theoretical support for the controllable synthesis of multi-scale nanoparticles. 11-4999 |
ISSN: | 1672-2515 |