Effect of graphite powder as a forming filler on the mechanical properties of SiCp/AI composites by pressure infiltration
(38vo1% SiCp + 2vo1% A1203f)/2024 A1 composites were fabricated by pressure infiltration. Graphite powder was introduced as a forming filler in preform preparation, and the effects of the powder size on the microstructures and mechanical properties of the final com- posites were investigated. The re...
Saved in:
Published in | 矿物冶金与材料学报:英文版 Vol. 23; no. 5; pp. 601 - 607 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | (38vo1% SiCp + 2vo1% A1203f)/2024 A1 composites were fabricated by pressure infiltration. Graphite powder was introduced as a forming filler in preform preparation, and the effects of the powder size on the microstructures and mechanical properties of the final com- posites were investigated. The results showed that the composite with 15 μm graphite powder as a forming filler had the maximum tensile strength of 506 MPa, maximum yield strength of 489 MPa, and maximum elongation of 1.2%, which decreased to 490 MPa, 430 MPa, and 0.4%, respectively, on increasing the graphite powder size from 15 to 60 μm. The composite with 60 μm graphite powder showed the highest elastic modulus, and the value decreased from 129 to 113 GPa on decreasing the graphite powder size from 60 to 15 μm. The differences between these properties are related to the different microstructures of the corresponding composites, which determine their failure modes. |
---|---|
Bibliography: | 11-5787/TF metal matrix composites; aluminum; silicon carbide; graphite; preparation; pressure infiltration; mechanical properties (38vo1% SiCp + 2vo1% A1203f)/2024 A1 composites were fabricated by pressure infiltration. Graphite powder was introduced as a forming filler in preform preparation, and the effects of the powder size on the microstructures and mechanical properties of the final com- posites were investigated. The results showed that the composite with 15 μm graphite powder as a forming filler had the maximum tensile strength of 506 MPa, maximum yield strength of 489 MPa, and maximum elongation of 1.2%, which decreased to 490 MPa, 430 MPa, and 0.4%, respectively, on increasing the graphite powder size from 15 to 60 μm. The composite with 60 μm graphite powder showed the highest elastic modulus, and the value decreased from 129 to 113 GPa on decreasing the graphite powder size from 60 to 15 μm. The differences between these properties are related to the different microstructures of the corresponding composites, which determine their failure modes. |
ISSN: | 1674-4799 1869-103X |