基于大数据的小麦蚜虫发生程度决策树预测分类模型

小麦蚜虫是危害小麦的主要害虫。其发生程度预测特别是短期预测一直是植物保护领域难以解决的科学问题。传统预测方法通常仅采用温湿度,预测结果与实际发生匹配度不高。基于大数据的理念和数据挖掘技术,通过对2003-2013年小麦蚜虫发生程度与瓢虫、寄生蜂、日最高气压、日照时数等18种变量关系的决策树分析,构建了分类模型。经分析发现,日照时数与小麦蚜虫的发生程度关联度最高,其次是天敌瓢虫。该模型置信度为91.49%,且运行稳健。...

Full description

Saved in:
Bibliographic Details
Published in大数据 no. 1; pp. 59 - 67
Main Author 张晴晴 刘勇 牟少敏 温孚江
Format Journal Article
LanguageChinese
Published 2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:小麦蚜虫是危害小麦的主要害虫。其发生程度预测特别是短期预测一直是植物保护领域难以解决的科学问题。传统预测方法通常仅采用温湿度,预测结果与实际发生匹配度不高。基于大数据的理念和数据挖掘技术,通过对2003-2013年小麦蚜虫发生程度与瓢虫、寄生蜂、日最高气压、日照时数等18种变量关系的决策树分析,构建了分类模型。经分析发现,日照时数与小麦蚜虫的发生程度关联度最高,其次是天敌瓢虫。该模型置信度为91.49%,且运行稳健。
Bibliography:10-1321/G2
wheat aphids; agricultural big data; decision tree; classification model
Wheat aphids are the main pests of wheat crops. The monitoring and forecasting of their occurrence degree, especially the short-term occurrence degree, is much difficult. Many traditional predictions rely only on temperature and humidity, so the match degree to the actual occurrence value is low. Based on the concept of big data and data mining programs, the predictive classification model was established by means of the decision tree analysis of the relationship between the occurrence degree of aphids and up to 18 variables. It was found out that the duration of sunshine has the highest degree of relevance to the forecasting level of aphids, followed by ladybird. The confidence coefficient of the model that runs steadily in the experiment is 91.49%.
ZHANG Qingqing, LIU Yong, MU Shaomin, WEN Fujiang( Agricultural Big Data Research Center, Shandong Agricultural University, Taian 271018, China)
ISSN:2096-0271